精英家教网 > 高中数学 > 题目详情
8.求值:
(1)(${\frac{27}{8}}$)${\;}^{-\frac{2}{3}}}$-3-1+(-$\frac{7}{8}$)0
(2)lg4+3lg5+lg$\frac{1}{5}$.

分析 (1)根据指数幂的运算性质计算即可,
(2)根据对数的运算性质计算即可.

解答 解:(1)(${\frac{27}{8}}$)${\;}^{-\frac{2}{3}}}$-3-1+(-$\frac{7}{8}$)0=$(\frac{3}{2})^{3×(-\frac{2}{3})}$-$\frac{1}{3}$+1=$\frac{4}{9}$+$\frac{2}{3}$=$\frac{10}{9}$;
(2)lg4+3lg5+lg$\frac{1}{5}$=lg4+2lg5+lg5+lg$\frac{1}{5}$=lg100+0=2.

点评 本题考查了对数的运算性质和指数幂的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知球的表面积为8π,球内接正三棱柱ABC-A1B1C1的底面边长为何值时,正三棱柱的侧面积最大?最大侧面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若不等式2x-1>m(x2-1)对满足-2≤m≤2的所有m都成立,则x的取值范围是(  )
A.($\frac{-\sqrt{7}}{2}$,$\frac{\sqrt{3}}{2}$)B.($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)C.($\frac{-1}{2}$,$\frac{1}{2}$)D.($\frac{-1+\sqrt{7}}{2}$,$\frac{1+\sqrt{3}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sinx+cosx,x∈R.
(1)求函数f(x)的最小正周期和最大值;
(2)函数y=f(x)的图象可由y=sinx的图象经过怎么的变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.(1)计算:27${\;}^{\frac{2}{3}}$-2${\;}^{lo{g}_{4}3}$×log2$\frac{1}{8}$+log23×log34;
(2)已知0<x<1,且x+x-1=3,求x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,根据如图的框图所打印出数列的第四项是870

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知偶函数f(x)对任意x∈R都有f(x+4)-f(x)=2f(2),则f(2018)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l过点(1,3),且与x轴、y轴都交于正半轴,求:
(1)直线l与坐标轴围成面积的最小值及此时直线l的方程;
(2)直线l与两坐标轴截距之和的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数g(x)=x+$\frac{2}{x}$-2.
(1)证明:函数g(x)在[$\sqrt{2}$,+∞)上是增函数;
(2)若不等式g(2x)-k•2x≥0在x∈[-1,1]上有解,求实数k的取值范围.

查看答案和解析>>

同步练习册答案