分析 (1)利用指数与对数的原式性质即可得出.
(2)由$({x}^{\frac{1}{2}}-{x}^{-\frac{1}{2}})^{2}$=x+x-1-2,由0<x<1,可得x<x-1,即可得出.
解答 解:(1)原式=${3}^{3×\frac{2}{3}}$-${2}^{lo{g}_{2}\sqrt{3}}$×$lo{g}_{2}{2}^{-3}$+$\frac{lg3}{lg2}×\frac{2lg2}{lg3}$=9-$\sqrt{3}$×(-3)+2=11+3$\sqrt{3}$.
(2)∵x+x-1=3,
∴$({x}^{\frac{1}{2}}-{x}^{-\frac{1}{2}})^{2}$=x+x-1-2=3-2=1,
∵0<x<1,∴x<x-1,
∴x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$=-1.
点评 本题考查了指数与对数的运算性质、乘法公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 若一个平面内有三个点到另一个平面的距离都相等,则这两个平面平行 | |
| B. | 若一条直线与一个平面内两条直线都垂直,那么这条直线垂直于这个平面 | |
| C. | 若两个平面都垂直于第三个平面,则这两个平面平行 | |
| D. | 若一条直线与两个相交平面都平行,则这条直线与这两个平面的交线平行 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com