精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=sinx+cosx,x∈R.
(1)求函数f(x)的最小正周期和最大值;
(2)函数y=f(x)的图象可由y=sinx的图象经过怎么的变换得到?

分析 (1)先利用辅助角公式对函数进行整理,再结合函数y=Asin(ωx+φ)的周期公式及正弦函数的性质即可得到结论.
(2)根据函数的图象变换规律得出.

解答 解:(1)因为:f(x)=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)
所以:函数f(x)的最小正周期T=$\frac{2π}{1}$=2π,最大值为$\sqrt{2}$.
(2)将y=sinx的图象向左平移$\frac{π}{4}$个单位得到y=sin(x+$\frac{π}{4}$)的函数图象,
再将y=sin(x+$\frac{π}{4}$)的图象上各点横坐标不变,纵坐标变为原来的$\sqrt{2}$,得到y=$\sqrt{2}$sin(x+$\frac{π}{4}$).

点评 本题主要考查函数的周期公式.函数y=Asin(ωx+φ)图象的变换,考查了正弦函数的图象和性质的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在三角形ABC中,acos(π-A)+bsin(${\frac{π}{2}$+B)=0,则三角形的形状为等腰三角形或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个几何体的三视图如图所示,如果该几何体的体积为12π,则该几何体的侧面积是(  )
A.B.12πC.16πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,且AC=BC=5,SB=$5\sqrt{5}$.(如图所示)
(1)证明:平面SBC⊥平面SAC;
(2)求侧面SBC与底面ABC所成二面角的大小;
(3)求三棱锥的体积VS-ABC

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)是定义在R上的偶函数,且f(x)在(-∞,0]上单调递减,则不等式f(lgx)>f(-2)的解集是(  )
A.($\frac{1}{100}$,100)B.(100,+∞)C.($\frac{1}{100}$,+∞)D.(0,$\frac{1}{100}$)∪(100,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求值:
(1)(${\frac{27}{8}}$)${\;}^{-\frac{2}{3}}}$-3-1+(-$\frac{7}{8}$)0
(2)lg4+3lg5+lg$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(-12,x-4),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数x=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x-klnx,(常数k>0).
(1)试确定函数f(x)的单调区间;
(2)若对于任意x≥1,f(x)>0恒成立,试确定实数k的取值范围.

查看答案和解析>>

同步练习册答案