分析 (1)先利用辅助角公式对函数进行整理,再结合函数y=Asin(ωx+φ)的周期公式及正弦函数的性质即可得到结论.
(2)根据函数的图象变换规律得出.
解答 解:(1)因为:f(x)=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)
所以:函数f(x)的最小正周期T=$\frac{2π}{1}$=2π,最大值为$\sqrt{2}$.
(2)将y=sinx的图象向左平移$\frac{π}{4}$个单位得到y=sin(x+$\frac{π}{4}$)的函数图象,
再将y=sin(x+$\frac{π}{4}$)的图象上各点横坐标不变,纵坐标变为原来的$\sqrt{2}$,得到y=$\sqrt{2}$sin(x+$\frac{π}{4}$).
点评 本题主要考查函数的周期公式.函数y=Asin(ωx+φ)图象的变换,考查了正弦函数的图象和性质的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{100}$,100) | B. | (100,+∞) | C. | ($\frac{1}{100}$,+∞) | D. | (0,$\frac{1}{100}$)∪(100,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com