精英家教网 > 高中数学 > 题目详情
1.已知f(x)是定义在R上的偶函数,且f(x)在(-∞,0]上单调递减,则不等式f(lgx)>f(-2)的解集是(  )
A.($\frac{1}{100}$,100)B.(100,+∞)C.($\frac{1}{100}$,+∞)D.(0,$\frac{1}{100}$)∪(100,+∞)

分析 根据函数奇偶性和单调性之间的关系,将不等式进行转化即可.

解答 解:∵f(x)是定义在R上偶函数,且在区间(-∞,0]上是单调递减,
∴在区间(0,+∞)上为增函数,
则不等式f(lgx)>f(-2)等价为f(|lgx|)>f(2)
即|lgx|>2,
∴lgx<-2或lgx>2,
∴0<x<$\frac{1}{100}$或x>100,
故选D.

点评 本题主要考查函数奇偶性和单调性的应用,将不等式进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.求函数f(x)=2sin(x+$\frac{π}{6}$)-2cosx的最大值.并指出f(x)取得最大值时x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={x|-2≤x<5},B={x|3x-5≥x-1}.
(1)求A∩B;
(2)若集合C={x|-x+m>0},且A∪C=C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆心在y轴上的圆C经过点A(1,2)和点B(0,3).
(Ⅰ)求圆C的方程;
(Ⅱ)若直线l在两坐标轴上的截距相等,且被圆C截得的弦长为$\sqrt{2}$,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sinx+cosx,x∈R.
(1)求函数f(x)的最小正周期和最大值;
(2)函数y=f(x)的图象可由y=sinx的图象经过怎么的变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为$\frac{1}{2}$,且该椭圆的短轴长为2$\sqrt{3}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点F2的直线l与椭圆交于M、N两点,求△F1MN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,根据如图的框图所打印出数列的第四项是870

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知A(4,6)、B(-3,-1)、C(5,-5)三点,则经过点A且与BC平行的直线l的点斜式方程为y-6=-$\frac{1}{2}$(x-4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数f(x)=loga(x+1),(a>0,a≠1)的图象经过点(-$\frac{3}{4}$,-2),图象上有三个点A、B、C,它们的横坐标依次为t-1,t,t+1,(t≥1),记三角形ABC的面积为S(t),
(1)求f(x)的表达式;
(2)求S(1);
(3)是否存在正整数m,使得对于一切不小于1的t,都有S(t)<m,若存在求的最小值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案