精英家教网 > 高中数学 > 题目详情
6.已知椭圆$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为$\frac{1}{2}$,且该椭圆的短轴长为2$\sqrt{3}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点F2的直线l与椭圆交于M、N两点,求△F1MN面积的最大值.

分析 (Ⅰ)根据椭圆的离心率公式e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$,求得a和b的关系,由b=2$\sqrt{3}$,即可求得a的值,求得椭圆方程;
(Ⅱ)由题意可得,设直线方程,代入椭圆方程,求得M和N的纵坐标,根据三角形的面积公式,${S}_{△{F}_{1}MN}$=$\frac{1}{2}$丨F1F2丨(y1-y2)=y1-y2=$\frac{12\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$,设$\sqrt{{m}^{2}+1}$=t≥1,则${S}_{△{F}_{1}MN}$=$\frac{12t}{3{t}^{2}+1}$=$\frac{12}{3t+\frac{1}{t}}$,根据函数的单调性即可求得△F1MN面积的最大值.

解答 解:(Ⅰ)椭圆:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$,
∴a2=$\frac{4}{3}$b2
由短轴长为2$\sqrt{3}$,得b2=3,a2=4,
∴椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(Ⅱ)设M、N点的坐标分别为(x1,y1),(x2,y2),不妨设y1>0,y2<0,
设直线l的方程为x=my+1,
$\left\{\begin{array}{l}{x=my+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,消去x得(3m2+4)y2+6my-9=0,
解得y1=$\frac{-3m+6\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$,y2=$\frac{-3m-6\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$,
依题意可知:${S}_{△{F}_{1}MN}$=$\frac{1}{2}$丨F1F2丨(y1-y2)=y1-y2=$\frac{12\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$,
不妨设$\sqrt{{m}^{2}+1}$=t≥1,于是${S}_{△{F}_{1}MN}$=$\frac{12t}{3{t}^{2}+1}$=$\frac{12}{3t+\frac{1}{t}}$,
∵y=3t+$\frac{1}{t}$在[1,+∞)上单调递增,
∴${S}_{△{F}_{1}MN}$=$\frac{12t}{3{t}^{2}+1}$=$\frac{12}{3t+\frac{1}{t}}$≤$\frac{12}{4}$=3,
当且仅当t=1即m=0时取到,
∴当m=0时,△F1MN面积的取最大值,最大值为3.

点评 本题考查椭圆的标准方程及简单性质,考查直线与椭圆的位置关系,三角形面积公式的应用及函数单调性,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若“x>a”是“x>2”的充分不必要条件,则实数a的取值范围为(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=$\frac{\sqrt{3}}{3}$x,过焦点且垂直于y轴的弦长为6,
(1)求双曲线方程;
(2)过双曲线的下焦点作倾角为45°的直线交曲线与MN,求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在平面,且PA=AB=10,设点C为⊙O上异于A、B的任意一点.
(1)求证:BC⊥平面PAC;
(2)若AC=6,求三棱锥C-PAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)是定义在R上的偶函数,且f(x)在(-∞,0]上单调递减,则不等式f(lgx)>f(-2)的解集是(  )
A.($\frac{1}{100}$,100)B.(100,+∞)C.($\frac{1}{100}$,+∞)D.(0,$\frac{1}{100}$)∪(100,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{3π}{4}$,则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系中,A、B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为$\frac{4π}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线2x+3y-6=0关于点(1,-1)对称的直线方程是(  )
A.2x+3y+7=0B.3x-2y+2=0C.2x+3y+8=0D.3x-2y-12=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=log22x-mlog2x+2,其中m∈R.
(1)当m=3时,求方程f(x)=0的解;
(2)当x∈[1,2]时,求f(x)的最小值.

查看答案和解析>>

同步练习册答案