精英家教网 > 高中数学 > 题目详情
17.双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=$\frac{\sqrt{3}}{3}$x,过焦点且垂直于y轴的弦长为6,
(1)求双曲线方程;
(2)过双曲线的下焦点作倾角为45°的直线交曲线与MN,求MN的长.

分析 (1)利用双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=$\frac{\sqrt{3}}{3}$x,过焦点且垂直于y轴的弦长为6,建立方程,即可求双曲线方程;
(2)过双曲线的下焦点作倾角为45°的直线交曲线与MN,联立方程,即可求MN的长.

解答 解:(1)由题意,$\frac{a}{b}$=$\frac{\sqrt{3}}{3}$,$\frac{2{b}^{2}}{a}$=6,
∴$a=1,b=\sqrt{3}$,
∴双曲线方程为y2-$\frac{{x}^{2}}{3}$=1;
(2)过双曲线的下焦点作倾角为45°的直线方程为y=x-2,
代入双曲线方程可得2x2-12x+9=0
∴|MN|=$\sqrt{2}•\sqrt{36-4×\frac{9}{2}}$=6.

点评 本题考查双曲线的方程与性质,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在△ABC中,若角A、B、C依次成等差数列,且a=1,b=$\sqrt{3}$,则S△ABC=(  )
A.$\frac{3}{4}$B.$\frac{{\sqrt{3}}}{4}$C.$\frac{{\sqrt{3}}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.点M(x,y)与定点F(1,0)的距离和它到直线l:x=2的距离的比为$\frac{{\sqrt{2}}}{2}$,
(Ⅰ)求点M的轨迹.
(Ⅱ)是否存在点M到直线$\frac{x}{{\sqrt{2}}}$+y=1的距离最大?最大距离是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.动圆M与圆O:x2+y2=1外切,与圆C:(x-3)2+y2=1内切,那么动圆的圆心M的轨迹是(  )
A.双曲线B.双曲线的一支C.椭圆D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={x|-2≤x<5},B={x|3x-5≥x-1}.
(1)求A∩B;
(2)若集合C={x|-x+m>0},且A∪C=C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直线l1、l2,平面α,l1∥l2,l1∥α,那么l2与平面α的关系是(  )
A.l1∥αB.l2⊥αC.l2∥α或l2D.l2与α相交

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆心在y轴上的圆C经过点A(1,2)和点B(0,3).
(Ⅰ)求圆C的方程;
(Ⅱ)若直线l在两坐标轴上的截距相等,且被圆C截得的弦长为$\sqrt{2}$,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为$\frac{1}{2}$,且该椭圆的短轴长为2$\sqrt{3}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点F2的直线l与椭圆交于M、N两点,求△F1MN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二次函数f(x)=ax2+bx+1,a,b∈R,当x=-1时,函数f(x)取到最小值,且最小值为0;
(1)求f(x)解析式;
(2)关于x的方程f(x)=|x+1|-k+3恰有两个不相等的实数解,求实数k的取值范围.

查看答案和解析>>

同步练习册答案