精英家教网 > 高中数学 > 题目详情
2.已知直线l1、l2,平面α,l1∥l2,l1∥α,那么l2与平面α的关系是(  )
A.l1∥αB.l2⊥αC.l2∥α或l2D.l2与α相交

分析 以正方体为载体,列举出所有情况,能求出结果.

解答 解:在正方体ABCD-A1B1C1D1中,
取AB=l1,CD=l2
当取面CDD1C1为平面α时,
∴满足l1∥l2,l1∥α,此时l2?α;
当取面B1A1D1C1为平面α时,
∴满足l1∥l2,l1∥α,此时l2∥α.
∴当直线l1、l2,平面α,l1∥l2,l1∥α时,
l2与平面α的关系是l2∥α或l2?α.
故选:C.

点评 本题考查线面关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设f(x)=$\left\{{\begin{array}{l}{x+2(x≤-1)}\\{{x^2}(-1<x<2)}\\{2x(x≥2)}\end{array}}$,
(1)在下列直角坐标系中画出f(x)的图象;
(2)若f(x)=3,求x的值;
(3)看图象写出函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=(${\frac{1}{2}}$)|1-x|+m有零点,则m的取值范围是-1≤m<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出如图所示的对应:

其中构成从A到B的映射的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=$\frac{\sqrt{3}}{3}$x,过焦点且垂直于y轴的弦长为6,
(1)求双曲线方程;
(2)过双曲线的下焦点作倾角为45°的直线交曲线与MN,求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点M与两个定点O(0,0),A(3,0)的距离之比为$\frac{1}{2}$,则点M的轨迹是(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在平面,且PA=AB=10,设点C为⊙O上异于A、B的任意一点.
(1)求证:BC⊥平面PAC;
(2)若AC=6,求三棱锥C-PAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{3π}{4}$,则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,在平面直角坐标系xOy中,设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其中b=$\frac{\sqrt{3}}{2}$a,F为椭圆的右焦点,P(1,1)为椭圆E内一点,PF⊥x轴.
(1)求椭圆E的方程;
(2)过P点作斜率为k1,k2的两条直线分别与椭圆交于点A,C和B,D.若满足|AP||PC|=|BP||DP|,问k1+k2是否为定值?若是,请求出此定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案