精英家教网 > 高中数学 > 题目详情
14.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在平面,且PA=AB=10,设点C为⊙O上异于A、B的任意一点.
(1)求证:BC⊥平面PAC;
(2)若AC=6,求三棱锥C-PAB的体积.

分析 (1)由圆的性质得AC⊥BC,由线面垂直得BC⊥PA,由此能证明BC⊥平面PAC.
(2)由勾股和得BC=8,推导出平面PAB⊥平面ABC,从而点C到AB的距离d即为点C到平面PAB的距离,由此能求出三棱锥C-PAB的体积.

解答 证明:(1)∵AB是⊙O的直径,点C为⊙O上异于A、B的任意一点,
∴AC⊥BC,
∵P是⊙O所在平面外一点,PA垂直于⊙O所在平面,BC?⊙O所在平面,
∴BC⊥PA,
∵AC∩PA=A,
∴BC⊥平面PAC.
解:(2)∵AC=6,PA=AB=10,
∴BC=$\sqrt{1{0}^{2}-{6}^{2}}$=8,
∵PA垂直于⊙O所在平面,∴PA⊥平面ABC,
又PA?平面PAB,∴平面PAB⊥平面ABC,
∴点C到AB的距离d即为点C到平面PAB的距离,
∵$\frac{1}{2}AB•d$=$\frac{1}{2}AC•BC$,
∴d=$\frac{AC•BC}{AB}$=$\frac{6×8}{10}$=$\frac{24}{5}$,
又S△PAB=$\frac{1}{2}×PA×AB=\frac{1}{2}×10×10$=50,
∴三棱锥C-PAB的体积V=$\frac{1}{3}×{S}_{△PAB}×d$=$\frac{1}{3}×50×\frac{24}{5}$=80.

点评 本题考查线面垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{y-x≤1}\\{x≤1}\end{array}\right.$,则$\frac{y+1}{x}$的最小值是(  )
A.0B.1C.-1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.动圆M与圆O:x2+y2=1外切,与圆C:(x-3)2+y2=1内切,那么动圆的圆心M的轨迹是(  )
A.双曲线B.双曲线的一支C.椭圆D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直线l1、l2,平面α,l1∥l2,l1∥α,那么l2与平面α的关系是(  )
A.l1∥αB.l2⊥αC.l2∥α或l2D.l2与α相交

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆心在y轴上的圆C经过点A(1,2)和点B(0,3).
(Ⅰ)求圆C的方程;
(Ⅱ)若直线l在两坐标轴上的截距相等,且被圆C截得的弦长为$\sqrt{2}$,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设等比数列{an}的前n项和为Sn,已知S10=10,S20=30,则S30=70.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为$\frac{1}{2}$,且该椭圆的短轴长为2$\sqrt{3}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点F2的直线l与椭圆交于M、N两点,求△F1MN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为($\frac{π}{4}$,0),将函数f(x)图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向右平移0.5π个单位长度后得到函数g(x)的图象;
(1)求函数f(x)与g(x)的解析式;
(2)当a≥1,求实数a与正整数n,使F(x)=f(x)+ag(x)在(0,nπ)恰有2019个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$=(2sinx,$\sqrt{3}$ cosx),$\overrightarrow{b}$=(-sinx,2sinx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的单调递增区间;
(2)求函数f(x)在区间[0,$\frac{π}{2}$]的最值及所对应的x值.

查看答案和解析>>

同步练习册答案