精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为($\frac{π}{4}$,0),将函数f(x)图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向右平移0.5π个单位长度后得到函数g(x)的图象;
(1)求函数f(x)与g(x)的解析式;
(2)当a≥1,求实数a与正整数n,使F(x)=f(x)+ag(x)在(0,nπ)恰有2019个零点.

分析 (1)依题意,可求得ω=2,φ=$\frac{π}{2}$,利用三角函数的图象变换可求得g(x)=sinx;
(2)由于φ(x)=asinx+cos2x=0(sinx≠0),?a=-$\frac{cos2x}{sinx}$$\stackrel{记为}{→}$m(x),可得m(x)=$\frac{-cos2x}{sinx}$=2sinx-$\frac{1}{sinx}$,m′(x)=2cosx+$\frac{cosx}{si{n}^{2}x}$=$\frac{cosx(2si{n}^{2}x+1)}{si{n}^{2}x}$,令m′(x)=0得x=$\frac{π}{2}$,$\frac{3π}{2}$,可得m(x)在(0,$\frac{π}{2}$)上单调递增,($\frac{π}{2}$,π)与(π,$\frac{3π}{2}$)上单调递减,($\frac{3π}{2}$,2π)上单调递增,分析可知a=±1时,m(x)=a在(0,π)∪(π,2π)有3解,
而2019÷3=673,得n=673*2=1346,从而存在a=1,n=1346或a=-1,n=1346时,φ(x)有2019个零点.

解答 解:(1)∵函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,
∴ω=$\frac{2π}{T}$=2,
又曲线y=f(x)的一个对称中心为($\frac{π}{4}$,0),φ∈(0,π),
故f($\frac{π}{4}$)=sin(2×$\frac{π}{4}$+φ)=0,得φ=$\frac{π}{2}$,所以f(x)=cos2x.
将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得y=cosx的图象,
再将y=cosx的图象向右平移0.5π个单位长度后得到函数g(x)=cos(x-0.5π)的图象,
∴g(x)=sinx.
(2)∵φ(x)=asinx+cos2x=0(∵sinx≠0),
?a=-$\frac{cos2x}{sinx}$$\stackrel{记为}{→}$m(x),可得m(x)=$\frac{-cos2x}{sinx}$=2sinx-$\frac{1}{sinx}$,m′(x)=2cosx+$\frac{cosx}{si{n}^{2}x}$=$\frac{cosx(2si{n}^{2}x+1)}{si{n}^{2}x}$,
令m′(x)=0得x=$\frac{π}{2}$,$\frac{3π}{2}$,
∴m(x)在(0,$\frac{π}{2}$)上单调递增,($\frac{π}{2}$,π)与(π,$\frac{3π}{2}$)上单调递减,($\frac{3π}{2}$,2π)上单调递增,
当a>1时,m(x)=a在(0,2π)有2解;
则a=1时,m(x)=a在(0,π)∪(π,2π)有3解,
而2019÷3=673,所以n=673×2=1346,
∴存在a=1,n=1346时,φ(x)有2019个零点.

点评 本题主要考查了正弦函数的图象和性质,由y=Asin(ωx+φ)的部分图象确定其解析式,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=(${\frac{1}{2}}$)|1-x|+m有零点,则m的取值范围是-1≤m<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在平面,且PA=AB=10,设点C为⊙O上异于A、B的任意一点.
(1)求证:BC⊥平面PAC;
(2)若AC=6,求三棱锥C-PAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{3π}{4}$,则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系中,A、B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为$\frac{4π}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若数列{an}是首项为$\frac{1}{2}$,公比为a-$\frac{1}{2}$的无穷等比数列,且{an}各项的和为a,则a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线2x+3y-6=0关于点(1,-1)对称的直线方程是(  )
A.2x+3y+7=0B.3x-2y+2=0C.2x+3y+8=0D.3x-2y-12=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,在平面直角坐标系xOy中,设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其中b=$\frac{\sqrt{3}}{2}$a,F为椭圆的右焦点,P(1,1)为椭圆E内一点,PF⊥x轴.
(1)求椭圆E的方程;
(2)过P点作斜率为k1,k2的两条直线分别与椭圆交于点A,C和B,D.若满足|AP||PC|=|BP||DP|,问k1+k2是否为定值?若是,请求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“?x∈R,x2+2x-1<0”的否定是(  )
A.?x∈R,x2+2x-1≥0B.?x∈R,x2+2x-1<0C.?x∈R,x2+2x-1≥0D.?x∈R,x2+2x-1>0

查看答案和解析>>

同步练习册答案