精英家教网 > 高中数学 > 题目详情
13.命题“?x∈R,x2+2x-1<0”的否定是(  )
A.?x∈R,x2+2x-1≥0B.?x∈R,x2+2x-1<0C.?x∈R,x2+2x-1≥0D.?x∈R,x2+2x-1>0

分析 直接利用全称命题的否定是特称命题,写出结果即可.

解答 解:由全称命题的否定为特称命题可知:?x∈R,x2+2x-1<0的否定为?x∈R,x2+2x-1≥0,
故选:C.

点评 本题考查命题的否定,全称命题与特称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为($\frac{π}{4}$,0),将函数f(x)图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向右平移0.5π个单位长度后得到函数g(x)的图象;
(1)求函数f(x)与g(x)的解析式;
(2)当a≥1,求实数a与正整数n,使F(x)=f(x)+ag(x)在(0,nπ)恰有2019个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$=(2sinx,$\sqrt{3}$ cosx),$\overrightarrow{b}$=(-sinx,2sinx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的单调递增区间;
(2)求函数f(x)在区间[0,$\frac{π}{2}$]的最值及所对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列叙述中不正确的是(  )
A.若直线的斜率存在,则必有倾斜角与之对应
B.每一条直线都对应唯一一个倾斜角
C.与坐标轴垂直的直线的倾斜角为0°或90°
D.若直线的倾斜角为α,则直线的斜率为tanα

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=a${\;}^{x-\frac{1}{2}}}$(a>0且a≠1),若f(lga)=$\sqrt{10}$,则a=10或${10}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列可作为函数y=f(x)的图象的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|4≤x≤8},B={x|m+1<x<2m-2},若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线x2-$\frac{y^2}{a^2}$=1(a>0)的渐近线与圆(x-1)2+y2=$\frac{3}{4}$相切,则a=(  )
A.$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{2x}{x+1}$.
(1)判断函数f(x)在区间[1,+∞)上的单调性,并用定义证明你的结论;
(2)求函数f(x)在区间[2,4]上的最大值与最小值.

查看答案和解析>>

同步练习册答案