精英家教网 > 高中数学 > 题目详情
1.下列叙述中不正确的是(  )
A.若直线的斜率存在,则必有倾斜角与之对应
B.每一条直线都对应唯一一个倾斜角
C.与坐标轴垂直的直线的倾斜角为0°或90°
D.若直线的倾斜角为α,则直线的斜率为tanα

分析 利用直线的倾斜角与斜率的关系即可得出.

解答 解:A.若直线的斜率存在,则必有倾斜角与之对应,正确;
B.每一条直线都对应唯一一个倾斜角,正确.
C.与坐标轴垂直的直线的倾斜角为0°或90°,正确;
D.若直线的倾斜角为α,$α=\frac{π}{2}$时,则直线的斜率不存在,因此不正确.
故选:D.

点评 本题考查了直线的倾斜角与斜率的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{3π}{4}$,则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,在平面直角坐标系xOy中,设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其中b=$\frac{\sqrt{3}}{2}$a,F为椭圆的右焦点,P(1,1)为椭圆E内一点,PF⊥x轴.
(1)求椭圆E的方程;
(2)过P点作斜率为k1,k2的两条直线分别与椭圆交于点A,C和B,D.若满足|AP||PC|=|BP||DP|,问k1+k2是否为定值?若是,请求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设α、β是两个不同的平面,给出下列命题:
①若平面α内的直线l垂直于平面β内的任意直线,则α⊥β;
②若平面α内的任一直线都平行于平面β,则α∥β;
③若平面α垂直于平面β,直线l在平面α内,则l⊥β;
④若平面α平行于平面β,直线l在平面α内,则l∥β.
其中正确命题的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=log22x-mlog2x+2,其中m∈R.
(1)当m=3时,求方程f(x)=0的解;
(2)当x∈[1,2]时,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在R上定义运算:$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc.若不等式$|\begin{array}{l}{x-1}&{a-2}\\{a+1}&{x}\end{array}|$≥1对任意实数x恒成立,则实数a的最大值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“?x∈R,x2+2x-1<0”的否定是(  )
A.?x∈R,x2+2x-1≥0B.?x∈R,x2+2x-1<0C.?x∈R,x2+2x-1≥0D.?x∈R,x2+2x-1>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对于函数f(x)=$\sqrt{a{x^2}+bx}$,存在一个正数b,使得f(x)的定义域和值域相同,则非零实数a的值为(  )
A.2B.-2C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某学校为了了解高二年级学生对教师教学的意见,打算从高二年级883名学生中抽取80名进行座谈,若采用下面的方法选取:先用简单随机抽样从883人中剔除3人,剩下880人再按系统抽样的方法进行,则每人入选的概率是(  )
A.$\frac{1}{11}$B.$\frac{80}{883}$C.$\frac{1}{12}$D.无法确定

查看答案和解析>>

同步练习册答案