精英家教网 > 高中数学 > 题目详情
12.求函数f(x)=2sin(x+$\frac{π}{6}$)-2cosx的最大值.并指出f(x)取得最大值时x的取值.

分析 推导出f(x)=2sin(x-$\frac{π}{6}$),由此能求出f(x)取得最大值时x的取值.

解答 解:f(x)=2sin(x+$\frac{π}{6}$)-2cosx
=2sin(x-$\frac{π}{6}$)…(4分)
∵-1≤sin(x-$\frac{π}{6}$)≤1
∴f (x)max=2 …(6分)
当f (x)max=2时,
$x-\frac{π}{6}$=$\frac{π}{2}+2kπ$,k∈Z,
∴x=2kπ+$\frac{2π}{3}$,k∈z.
∴x的集合是{x|x=2kπ+$\frac{2π}{3}$,k∈z}…(10分)

点评 本题考查三角函数值取最大值时x的集合的求法,是中档题,解题时要认真审题,注意三角函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如果面积为6的直角三角形的三边的长由小到大成等差数列,公差为d.
(1)求d的值;
(2)在以最短边的长为首项,公差为d的等差数列中,102为第几项?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)是奇函数,且在(0,+∞)内是增函数,又f(-2)=0,则x•f(x)<0的解集是(-2,0)∪(0,2).

查看答案和解析>>

科目:高中数学 来源:2017届湖南永州市高三高考一模考试数学(文)试卷(解析版) 题型:选择题

某学校高一、高二、高三年级的学生人数之比为4:3:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则从高二年级抽取的学生人数为( )

A.15 B.20 C.25 D.30

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在三角形ABC中,acos(π-A)+bsin(${\frac{π}{2}$+B)=0,则三角形的形状为等腰三角形或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若“x>a”是“x>2”的充分不必要条件,则实数a的取值范围为(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.平面上两点A(-1,0),B(1,0),在圆C:(x-3)2+(y-4)2=4上取一点P,
(Ⅰ)x-y+c≥0恒成立,求c的范围
(Ⅱ)从x+y+1=0上的点向圆引切线,求切线长的最小值
(Ⅲ)求|PA|2+|PB|2的最值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.空间直角坐标系中,z轴上到点(1,0,2)和(1,-3,1)距离相等的点的坐标是(0,0,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)是定义在R上的偶函数,且f(x)在(-∞,0]上单调递减,则不等式f(lgx)>f(-2)的解集是(  )
A.($\frac{1}{100}$,100)B.(100,+∞)C.($\frac{1}{100}$,+∞)D.(0,$\frac{1}{100}$)∪(100,+∞)

查看答案和解析>>

同步练习册答案