分析 根据函数为奇函数求出f(2)=0,再将不等式x f(x)<0分成两类加以讲义,再分别利用函数的单调性进行求解,可以得出相应的解集.
解答 解:∵f(x)为奇函数,且在(0,+∞)上是增函数,f(-2)=0,
∴f(2)=-f(-2)=0,在(0,+∞)内是增函数,
∴x f(x)<0则$\left\{\begin{array}{l}{x>0}\\{f(x)<f(2)}\end{array}\right.$或 $\left\{\begin{array}{l}{x<0}\\{f(x)>f(-2)}\end{array}\right.$,
根据在(-∞,0)和(0,+∞)内是都是增函数,
解得:x∈(-2,0)∪(0,2)
故答案为:(-2,0)∪(0,2).
点评 本题主要考查了函数的奇偶性的性质,以及函数单调性的应用等有关知识,属于基础题.结合函数的草图,会对此题有更深刻的理解.
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{{\sqrt{3}}}{4}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com