【题目】已知双曲线
的右顶点为A,抛物线的焦点与点A重合.
(1)求抛物线的标准方程;
(2)若直线l过点A且斜率为双曲线的离心率,求直线l被抛物线截得的弦长.
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,满足(2b﹣c)cosA=acosC.
(1)求角A;
(2)若
,b+c=5,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
是空气质量的一个重要指标,我国
标准采用世卫组织设定的最宽限值,即
日均值在
以下空气质量为一级,在
之间空气质量为二级,在
以上空气质量为超标.如图是某地
月
日到
日
日均值(单位:
)的统计数据,则下列叙述不正确的是( )
![]()
A.从
日到
日,
日均值逐渐降低
B.这
天的
日均值的中位数是![]()
C.这
天中
日均值的平均数是![]()
D.从这
天的日均
监测数据中随机抽出一天的数据,空气质量为一级的概率是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图甲所示,
是梯形
的高,
,
,
,现将梯形
沿
折起如图乙所示的四棱锥
,使得
,点
是线段
上一动点.
![]()
![]()
(1)证明:
和
不可能垂直;
(2)当
时,求
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年11月15日,我市召开全市创建全国文明城市动员大会,会议向全市人民发出动员令,吹响了集结号.为了了解哪些人更关注此活动,某机构随机抽取了年龄在15~75岁之间的100人进行调查,并按年龄绘制的频率分布直方图如图所示,其分组区间为:
,
,
,
,
,
.把年龄落在
和
内的人分别称为“青少年人”和“中老年人”,经统计“青少年人”与“中老年人”的人数之比为
.
![]()
(1)求图中
的值,若以每个小区间的中点值代替该区间的平均值,估计这100人年龄的平均值
;
(2)若“青少年人”中有15人关注此活动,根据已知条件完成题中的
列联表,根据此统计结果,问能否有
的把握认为“中老年人”比“青少年人”更加关注此活动?
关注 | 不关注 | 合计 | |
青少年人 | 15 | ||
中老年人 | |||
合计 | 50 | 50 | 100 |
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
附参考公式:
,其中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设椭圆
:
,长轴的右端点与抛物线
:
的焦点
重合,且椭圆
的离心率是
.
![]()
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过
作直线
交抛物线
于
,
两点,过
且与直线
垂直的直线交椭圆
于另一点
,求
面积的最小值,以及取到最小值时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知过点
的椭圆
的离心率为
,左顶点和上顶点分别为A,B.
![]()
(1)求椭圆的标准方程;
(2)若P为线段OD延长线上一点,直线PA交椭圆于另一点E,直线PB交椭圆于另一点Q.
①求直线PA与PB的斜率之积;
②判断直线AB与EQ是否平行?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们知道,地球上的水资源有限,爱护地球、节约用水是我们每个人的义务和责任.某市政府为了对自来水的使用进行科学管理,节约水资源,计划确定一个家庭年用水量的标准,为此,对全市家庭日常用水的情况进行抽样调查,并获得了
个家庭某年的用水量(单位:立方米),统计结果如下表所示.
![]()
(Ⅰ)分别求出
的值;
(Ⅱ)若以各组区间中点值代表该组的取值,试估计全市家庭平均用水量;
(Ⅲ)从样本中年用水量在
(单位:立方米)的
个家庭中任选
个,作进一步跟踪研究,求年用水量最多的家庭被选中的概率(
个家庭的年用水量都不相等).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极坐标建立极坐标系,圆
的极坐标方程为
.
求
的普通方程;
将圆
平移,使其圆心为
,设
是圆
上的动点,点
与
关于原点
对称,线段
的垂直平分线与
相交于点
,求
的轨迹的参数方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com