精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极坐标建立极坐标系,圆的极坐标方程为.

的普通方程;

将圆平移,使其圆心为,设是圆上的动点,点关于原点对称,线段的垂直平分线与相交于点,求的轨迹的参数方程.

【答案】(1);(2)为参数)

【解析】

1)利用,将极坐标方程转化为普通方程;

2)根据垂直平分线性质得到,则,为定值,可以得到点轨迹,再将其转化成参数方程.

根据题意,的圆心为,半径为,故的普通方程为

(圆心分,半径分,准确写出方程分)或

两边同乘以,得.

.

的普通方程为.

连接,由垂直平分线的性质可知.

所以,点的轨迹是以为焦点(焦距为),长轴为的椭圆.

由上,该椭圆的短半轴长为.

故可得的轨迹的参数方程为为参数)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点为A,抛物线的焦点与点A重合.

1)求抛物线的标准方程;

2)若直线l过点A且斜率为双曲线的离心率,求直线l被抛物线截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:存在x0R,使;命题q:对任意xRmx2+mx+10;若pq为真,pq为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,过椭圆的焦点且与长轴垂直的弦长为1

1)求椭圆C的方程;

2)设点M为椭圆上第一象限内一动点,AB分别为椭圆的左顶点和下顶点,直线MBx轴交于点C,直线MAy轴交于点D,求证:四边形ABCD的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培训该品种花苗.为观测其生长情况,分别在实验地随机抽取各株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为及以上的花苗为优质花苗.

求图中的值,并求综合评分的中位数.

用样本估计总体,以频率作为概率,若在两块试验地随机抽取棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;

填写下面的列联表,并判断是否有的把握认为优质花苗与培育方法有关.

附:下面的临界值表仅供参考.

(参考公式:,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,点为棱的中点.

(1)证明:

(2)证明:面

(3)求直线与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,过坐标原点的直线两点,点在第一象限,轴,垂足为.连结并延长交于点.

(1)设到直线的距离为,求的取值范围;

(2)求面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩阵)满足I为单位矩阵).

1)求m的值;

2)设.矩阵变换可以将点P变换为点Q当点P在直线上移动时,求经过矩阵A变换后点Q的轨迹方程.

3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,求出所有这样的直线;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,抛物线焦点均在x轴上,的中心和顶点均在原点O,从每条曲线上各取两个点,将其坐标记录于表中,则的左焦点到的准线之间的距离为( )

3

-2

4

0

-4

A.B.C.1D.2

查看答案和解析>>

同步练习册答案