【题目】已知命题p:存在x0∈R,使
;命题q:对任意x∈R,mx2+mx+1>0;若p∨q为真,p∧q为假,求实数m的取值范围.
科目:高中数学 来源: 题型:
【题目】
是空气质量的一个重要指标,我国
标准采用世卫组织设定的最宽限值,即
日均值在
以下空气质量为一级,在
之间空气质量为二级,在
以上空气质量为超标.如图是某地
月
日到
日
日均值(单位:
)的统计数据,则下列叙述不正确的是( )
![]()
A.从
日到
日,
日均值逐渐降低
B.这
天的
日均值的中位数是![]()
C.这
天中
日均值的平均数是![]()
D.从这
天的日均
监测数据中随机抽出一天的数据,空气质量为一级的概率是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知过点
的椭圆
的离心率为
,左顶点和上顶点分别为A,B.
![]()
(1)求椭圆的标准方程;
(2)若P为线段OD延长线上一点,直线PA交椭圆于另一点E,直线PB交椭圆于另一点Q.
①求直线PA与PB的斜率之积;
②判断直线AB与EQ是否平行?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们知道,地球上的水资源有限,爱护地球、节约用水是我们每个人的义务和责任.某市政府为了对自来水的使用进行科学管理,节约水资源,计划确定一个家庭年用水量的标准,为此,对全市家庭日常用水的情况进行抽样调查,并获得了
个家庭某年的用水量(单位:立方米),统计结果如下表所示.
![]()
(Ⅰ)分别求出
的值;
(Ⅱ)若以各组区间中点值代表该组的取值,试估计全市家庭平均用水量;
(Ⅲ)从样本中年用水量在
(单位:立方米)的
个家庭中任选
个,作进一步跟踪研究,求年用水量最多的家庭被选中的概率(
个家庭的年用水量都不相等).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数).以原点
为极点,以
轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆
的方程为
被圆
截得的弦长为
.
(Ⅰ)求实数
的值;
(Ⅱ)设圆
与直线
交于点
,若点
的坐标为
,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动圆M与圆F1:x2+y2+6x+5=0外切,同时与圆F2:x2+y2﹣6x﹣91=0内切.
(1)求动圆圆心M的轨迹方程E,并说明它是什么曲线;
(2)若直线y
x+m与(1)中的轨迹E有两个不同的交点,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将一颗骰子先后抛掷2次,观察向上的点数.
(1) 列举出所有可能的结果,并求两点数之和为5的概率;
(2) 求以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点
在圆
的内部的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极坐标建立极坐标系,圆
的极坐标方程为
.
求
的普通方程;
将圆
平移,使其圆心为
,设
是圆
上的动点,点
与
关于原点
对称,线段
的垂直平分线与
相交于点
,求
的轨迹的参数方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆M相切.
(1)求圆O的方程;
(2)圆O与x轴交于E,F两点,圆O内的动点D使得DE,DO,DF成等比数列,求![]()
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com