【题目】在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,以轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆的方程为被圆截得的弦长为.
(Ⅰ)求实数的值;
(Ⅱ)设圆与直线交于点,若点的坐标为,且,求的值.
科目:高中数学 来源: 题型:
【题目】已知定义在上的函数及如下的4个命题:
关于x的方程有个不同的零点;
对于实数,不等式恒成立;
在上,方程有5个零点;
时,函数的图象与x轴图成的形的面积是4.
则以上命题正确的为______把正确命题前的序号填在横线上
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建设一仓库,设,并在公路北侧建造边长为的正方形无顶中转站CDEF(其中EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且.
(1)求关于的函数解析式,并求出定义域;
(2)如果中转站四堵围墙造价为10万元/km,两条道路造价为30万元/km,问:取何值时,该公司建设中转站围墙和两条道路总造价M最低.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某化工企业2018年年底投入100万元,购入一套污水处理设备。该设备每年的运转费用是0.5万元,此外,每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元。设该企业使用该设备年的年平均污水处理费用为(单位:万元)
(1)用表示;
(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备。则该企业几年后需要重新更换新的污水处理设备。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的左、右焦点分别为、,点为椭圆上任意一点,关于原点的对称点为,有,且的最大值.
(1)求椭圆的标准方程;
(2)若是关于轴的对称点,设点,连接与椭圆相交于点,直线与轴相交于点,试求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培训该品种花苗.为观测其生长情况,分别在实验地随机抽取各株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为及以上的花苗为优质花苗.
求图中的值,并求综合评分的中位数.
用样本估计总体,以频率作为概率,若在两块试验地随机抽取棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;
填写下面的列联表,并判断是否有的把握认为优质花苗与培育方法有关.
附:下面的临界值表仅供参考.
(参考公式:,其中.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小学举办“父母养育我,我报父母恩”的活动,对六个年级(一年级到六年级的年级代码分别为1,2…,6)的学生给父母洗脚的百分比y%进行了调查统计,绘制得到下面的散点图.
(1)由散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明;
(2)建立y关于x的回归方程,并据此预计该校学生升入中学的第一年(年级代码为7)给父母洗脚的百分比.
附注:参考数据:
参考公式:相关系数,若r>0.95,则y与x的线性相关程度相当高,可用线性回归模型拟合y与x的关系.回归方程中斜率与截距的最小二乘估计公式分别为= ,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com