精英家教网 > 高中数学 > 题目详情
12.分别求下列函数的导数:
(1)y=ex•cos x;
(2)y=x(x2+$\frac{1}{x}$+$\frac{1}{{x}^{3}}$)
(3)y=ln$\sqrt{1+{x}^{2}}$.

分析 根据导数的运算法则进行求解即可.

解答 解:(1)y′=(ex)′cos x+ex(cos x)′=excos x-exsin x.…(4分)
(2)∵y=x3+1+$\frac{1}{x2}$,∴y′=3x2-$\frac{2}{x3}$.…(8分)
(3)y=ln$\sqrt{1+x2}$=$\frac{1}{2}$ln(1+x2),
∴y′=$\frac{1}{2}$•$\frac{1}{1+x2}$(1+x2)′=$\frac{1}{2}$•$\frac{1}{1+x2}$•2x=$\frac{x}{1+x2}$.
…(12分)

点评 本题主要考查导数的计算,根据导数的运算法则是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求下列函数的导数:
(1)f(x)=ln5;
(2)f(x)=2x
(3)f(x)=lgx;
(4)f(x)=cosx tanx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:$\sqrt{{{(x-a)}^2}+{{(y-b)}^2}}$可以转化为平面上点M(x,y)与点N(a,b)的距离.结合上述观点,可得f(x)=$\sqrt{{x^2}+4x+20}$+$\sqrt{{x^2}+2x+10}$的最小值为5$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}的通项公式为an=$\frac{3}{2n-5}$,记数列{an}的前n项和为Sn,则使Sn≤0成立的n的最大值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.△ABC中,内角A,B,C所对的边分别为a,b,c,且BC边上的高为$\frac{a}{2}$,则$\frac{c}{b}+\frac{b}{c}$的最大值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在△ABC中,∠BAC=120°,AD⊥AB,|BC|=$\sqrt{3}$|BD|,|AD|=1,则|AC|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列向量中不是单位向量的是(  )
A.(-1,0)B.(1,1)C.(cos37°,sin37°)D.$\frac{\overline a}{{|{\overline a}|}}(|{\overline a}|≠0)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知α=-1.58,则α是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.勾股定理:在直角边长为a、b,斜边长为c的直角三角形中,有a2+b2=c2.类比勾股定理可得,在长、宽、高分别为p、q、r,体对角线长为d 的长方体中,有(  )
A.p2+q2+r2+pq+qr+rp=d2B.p3+q3+r3=d3
C.p2+q2+r2=d2D.p+q+r=d

查看答案和解析>>

同步练习册答案