精英家教网 > 高中数学 > 题目详情

设曲线和曲线在它们的交点处的两切线的夹角为,求的值.

联立两曲线方程解得两曲线交点为(1,1).

设两曲线在交点处的切线斜率分别为,则

由两直线夹角公式


解析:

要求两切线的夹角,关键是确定在两曲线交点处的切线的斜率.根据导数的几何意义,只需先求出两曲线在交点处的导数,再应用两直线夹角公式求出夹角即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•聊城一模)过点P(1,0)作曲线C:y=xk(x∈(0,+∞),k∈N*,k>1)的切线,切点为M1,设M1在x轴上的投影是点P1;又过点P1作曲线C的切线,切点为M2,设M2在x轴上的投影是点P2;…;依此下去,得到一系列点M1,M2,…Mn,…;设它们的横坐标a1,a2,…,
an…构成数列为{an}.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:an≥1+
n
k-1

(Ⅲ)当k=2时,令bn=
n
an
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(1,0)作曲线C:y=x2(x∈(0,+∞)的切线,切点为M1,设M1在x轴上的投影是点P1.又过点P1作曲线C的切线,切点为M2,设M2在x轴上的投影是点P2,….依此下去,得到一系列点M1,M2…,Mn,…,设它们的横坐标a1,a2,…,an,…,构成数列为{an}.
(1)求证数列{an}是等比数列,并求其通项公式;
(2)令bn=
nan
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设曲线在它们交点处的两切线夹角为,求


查看答案和解析>>

科目:高中数学 来源: 题型:

设曲线和曲线在它们的交点处的两切线的夹角为,求

查看答案和解析>>

同步练习册答案