精英家教网 > 高中数学 > 题目详情
18、设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)讨论函数f(x)的单调性.
分析:(Ⅰ)函数在切点处的导数值为切线斜率,切点在切线上,列方程解.
(Ⅱ)导函数大于0对应区间是单调递增区间;导函数小于0对应区间是单调递减区间.
解答:解:(Ⅰ)求导得f′(x)=3x2-6ax+3b.
由于f(x)的图象与直线12x+y-1=0相切于点(1,-11),
所以f(1)=-11,f′(1)=-12,即:
1-3a+3b=-11解得:a=1,b=-3.
3-6a+3b=-12
(Ⅱ)由a=1,b=-3得:f′(x)=3x2-6ax+3b=3(x2-2x-3)=3(x+1)(x-3)
令f′(x)>0,解得x<-1或x>3;
又令f′(x)<0,解得-1<x<3.
故当x∈(-∞,-1)时,f(x)是增函数,
当x∈(3,+∞)时,f(x)也是增函数,
但当x∈(-1,3)时,f(x)是减函数.
点评:考查导数的几何意义及利用导数求函数的单调区间.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2+x+1,a∈R.
(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x=-1处的切线方程;
(2)若函数f(x)在区间(
12
,1)
内不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2-a2x+5(a>0)
(1)当函数f(x)有两个零点时,求a的值;
(2)若a∈[3,6],当x∈[-4,4]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3x2-9x-1.求:
(Ⅰ)函数在(1,f(1))处的切线方程;
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3•cosx+1,若f(a)=5,则f(-a)=
 

查看答案和解析>>

同步练习册答案