精英家教网 > 高中数学 > 题目详情
设函数f(x)=x3•cosx+1,若f(a)=5,则f(-a)=
 
分析:根据题意得f(a)=a3•cosa+1=5,解得a3•cosa=4.再由余弦函数为偶函数,算出f(-a)=-a3•cosa+1,代入前面的数据即可得到f(-a)的值.
解答:解:∵f(x)=x3•cosx+1,
∴f(a)=a3•cosa+1=5,可得a3•cosa=4
因此,f(-a)=(-a)3•cos(-a)+1=-a3•cosa+1=-4+1=-3.
故答案为:-3
点评:本题给出函数f(x)的表达式,在已知f(a)=5的情况下求f(-a)的值.着重考查了函数的奇偶性和函数值的求法等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2+x+1,a∈R.
(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x=-1处的切线方程;
(2)若函数f(x)在区间(
12
,1)
内不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2-a2x+5(a>0)
(1)当函数f(x)有两个零点时,求a的值;
(2)若a∈[3,6],当x∈[-4,4]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3x2-9x-1.求:
(Ⅰ)函数在(1,f(1))处的切线方程;
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案