精英家教网 > 高中数学 > 题目详情

已知无穷数列{an}中,a1,a2,…,am是首项为10,公差为-2的等差数列;am+1,am+2,…a2m是首项为数学公式,公比为数学公式的等比数列(m≥3,m∈N*),并对任意n∈N*,均有an+2m=an成立.
(1)当m=12时,求a2010
(2)若数学公式,试求m的值;
(3)判断是否存在m,使S128m+3≥2010成立,若存在,求出m的值;若不存在,请说明理由.

(1)an+24=an;所以a2010=a18(2分)
a18是以为首项,以为公比的等比数列的第6项,
所以(4分)

(2),所以m≥7(5分)
因为,所以2km+m+7=(2k+1)m+7=52,其中m≥7,m∈N,k∈N(6分)
(2k+1)m=45,
当k=0时,m=45,成立.
当k=1时,m=15,成立;
当k=2时,m=9成立(9分)
当k≥3时,
所以m可取9、15、45(10分)

(3)(12分)

设f(m)=704m-64m2(14分)
g(m)>1922;
f(m)=-64(m2-11m),对称轴
所以f(m)在m=5或6时取最大f(x)max=f(5)=f(6)=1920,
因为1922>1920,所以不存在这样的m(16分)
分析:(1)由an+24=an,知a2010=a18,a18是以为首项,以为公比的等比数列的第6项,所以
(2)由,知m≥7,由,知2km+m+7=(2k+1)m+7=52,由此入手可求出m可取9、15、45.
(3)由,知.设f(m)=704m-64m2>1922;f(m)=-64(m2-11m),f(x)max=f(5)=f(6)=1920,所以不存在这样的m.
点评:本题考查数列的不等式的综合应用,解题时要认真审题,注意计算能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知无穷数列{an}前n项和Sn=
13
an-1
,则数列{an}的各项和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知无穷数列{an}中a1=1,且满足从第二项开始每一项与前一项的比值为同一个常数-
1
2
,则无穷数列{an}的各项和
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区一模)已知无穷数列{an},首项a1=3,其前n项和为Sn,且an+1=(a-1)Sn+2(a≠0,a≠1,n∈N*).若数列{an}的各项和为-
8
3
a
,则a=
-
1
2
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•普陀区二模)已知无穷数列{an}中,a1,a2,…,am是以10为首项,以-2为公差的等差数列;am+1,am+2,…,a2m是以
1
2
为首项,以
1
2
为公比的等比数列(m≥3,m∈N*);并且对一切正整数n,都有an+2m=an成立.
(1)当m=3时,请依次写出数列{an}的前12项;
(2)若a23=-2,试求m的值;
(3)设数列{an}的前n项和为Sn,问是否存在m的值,使得S128m+3≥2008成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知无穷数列{an}中,a1,a2,…,am构成首项为2,公差为-2的等差数列am+1,am+2,…,a2m,构成首项为
1
2
,公比为
1
2
的等比数列,其中m≥3,m∈N+
(l)当1≤n≤2m,n∈N+,时,求数列{an}的通项公式;
(2)若对任意的n∈N+,都有an+2m=an成立.
①当a27=
1
64
时,求m的值;
②记数列{an}的前n项和为Sn.判断是否存在m,使得S4m+1≥2成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案