精英家教网 > 高中数学 > 题目详情
3.动点P到定点D(1,0)的距离与到直线l:x=-1的距离相等,动点P形成曲线记作C.
(1)求动点P的轨迹方程
(2)过点Q(4,1)作曲线C的弦AB,恰被Q平分,求AB所在直线方程.

分析 (1)先设P(x,y),由抛物线定义知点P的轨迹E为抛物线,写出其标准方程即可;
(2)设出A(x1,y1),B(x2,y2),将两点坐标代入抛物线方程,两个等式相减得到中点的坐标与斜率的关系,求出直线的斜率,利用点斜式写出直线的方程.

解答 解:(1)设P(x,y),
由抛物线定义知点P的轨迹E为抛物线,
其方程为:y2=4x.
(2)设A(x1,y1),B(x2,y2),则y12=4x1,y22=4x2
两式相减得(y1+y2)(y1-y2)=4(x1-x2
∵过点Q(4,1)作曲线C的弦AB,恰被Q平分,
∴8(y1-y2)=4(x1-x2),
∴KAB=$\frac{1}{2}$
直线AB方程:y-1=$\frac{1}{2}$(x-4),即x-2y-2=0.

点评 本题主要考查了抛物线的定义,考查直线方程,解决直线与圆锥曲线相交得到的弦中点或中点弦问题,常规方法是:将直线与圆锥曲线的方程联立利用韦达定理解决;也可以用点差法来解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.给出下列四个命题:
(1)异面直线是指空间两条既不平行也不相交的直线;
(2)若直线l上有两点到平面α的距离相等,则l∥α;
(3)若直线m与平面α内无穷多条直线都垂直,则m⊥α;
(4)两条异面直线中的一条垂直于平面α,则另一条必定不垂直于平面α.
其中正确命题的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题的说法错误的是(  )
A.对于命题p:?x∈R,x2+x+1>0 则¬p:?x∈R,x2+x+1≤0
B.命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”
C.若复合命题p∨q为假命题,则p,q都是假命题
D.“y<2”是“向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,y-4)之间的夹角为钝角”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=cos(2x+$\frac{π}{3}$),g(x)=sin(2x+$\frac{2π}{3}$),将f(x)的图象经过下列哪种变换可以与g(x)的图象重合(  )
A.向左平移$\frac{π}{12}$B.向右平移$\frac{π}{12}$C.向左平移$\frac{π}{6}$D.向右平移$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U=R,A={y|y=2x+1},B={x||x-1|+|x-2|<2},则(∁UA)∩B=(  )
A.B.{x|$\frac{1}{2}$<x≤1}C.{x|x<1}D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.中心在坐标原点,其中一个焦点为($\sqrt{3}$,0),离心率为$\frac{\sqrt{3}}{2}$椭圆的左、右焦点为F1,F2
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P是该椭圆上的一个动点,求$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最大值和最小值;
(Ⅲ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知F1,F2是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,若点F2关于直线y=$\frac{b}{a}$x的对称点M也在双曲线上,则该双曲线的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中个抽出500 件,量其内径尺寸的结果如下表(表1为甲厂,表2为乙 厂):
表1
分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)
频数297185159766218
表2
分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)
频数12638618292614
(1)试分别估计两个分厂生产的零件的优质品率;
(2)由于以上统计数据填下面2×2列联表(填写在答题卡的2×2列联表中),并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=x4(2-x2)(0<x<$\sqrt{2}$)的最大值是(  )
A.0B.1C.$\frac{16}{27}$D.$\frac{32}{27}$

查看答案和解析>>

同步练习册答案