8£®ÖÐÐÄÔÚ×ø±êÔ­µã£¬ÆäÖÐÒ»¸ö½¹µãΪ£¨$\sqrt{3}$£¬0£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$ÍÖÔ²µÄ×ó¡¢ÓÒ½¹µãΪF1£¬F2£®
£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨¢ò£©ÈôPÊǸÃÍÖÔ²ÉϵÄÒ»¸ö¶¯µã£¬Çó$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$µÄ×î´óÖµºÍ×îСֵ£»
£¨¢ó£©Éè¹ý¶¨µãM£¨0£¬2£©µÄÖ±ÏßlÓëÍÖÔ²½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÇÒ¡ÏAOBΪÈñ½Ç£¨ÆäÖÐOÎª×ø±êÔ­µã£©£¬ÇóÖ±ÏßlµÄбÂÊkµÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©¸ù¾ÝÍÖÔ²µÄ¶¨ÒåÇóµÃÍÖÔ²·½³Ì£®
£¨¢ò£©¸ù¾ÝÌâÒ⣬Çó³öa£¬b£¬cµÄÖµ£¬È»ºóÉèPµÄ×ø±ê£¬¸ù¾ÝPF1•PF2µÄ±í´ïʽ£¬°´ÕÕÒ»Ôª¶þ´Îº¯ÊýÇó×îÖµ·½·¨Çó½â£®
£¨¢ó£©Éè³öÖ±Ïß·½³Ì£¬ÓëÒÑÖªÍÖÔ²ÁªÁ¢·½³Ì×飬ÔËÓÃÉè¶ø²»ÇóΤ´ï¶¨ÀíÇó³ö¸ùµÄ¹ØÏµ£¬Çó³ökµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨¢ñ£©¡ßÆäÖÐÒ»¸ö½¹µãΪ£¨$\sqrt{3}$£¬0£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬¡àc=$\sqrt{3}$£¬$\frac{c}{a}=\frac{\sqrt{3}}{2}$£®
¡àa=2£¬b=1
¡àÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$
£¨¢ò£©ÓÉÌâÒâÒ×Öª£¬½¹µãΪ£¨$\sqrt{3}$£¬0£©£¬£¨-$\sqrt{3}$£¬0£©£¬ÉèP£¨x£¬y£©£¬
Ôò$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}=£¨-\sqrt{3}-x£¬-y£©•£¨\sqrt{3}-x£¬-y£©$=${x}^{2}+{y}^{2}-3={x}^{2}+1-\frac{{x}^{2}}{4}-3=\frac{1}{4}£¨3{x}^{2}-8£©$
ÒòΪx¡Ê[-2£¬2]£¬
¹Êµ±x=0£¬¼´µãPΪÍÖÔ²¶ÌÖá¶Ëµãʱ£¬
$\overrightarrow{P{F}_{1}}$ÓÐ×îСֵ-2
µ±x=¡À2£¬¼´µãPΪÍÖÔ²³¤Öá¶Ëµãʱ£¬
$\overrightarrow{P{F}_{1}}$ÓÐ×î´óÖµ1
£¨¢ó£©ÏÔȻֱÏßx=0²»Âú×ãÌâÉèÌõ¼þ£¬
¿ÉÉèÖ±Ïßl£ºy=kx+2£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+2}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥y£¬ÕûÀíµÃ£º$£¨{k}^{2}+\frac{1}{4}£©{x}^{2}+4kx+3=0$
¡à${x}_{1}+{x}_{2}=-\frac{4k}{{k}^{2}+\frac{1}{4}}£¬{x}_{1}{x}_{2}=\frac{3}{{k}^{2}+\frac{1}{4}}$
ÓÉ¡÷=$£¨4k£©^{2}-4£¨{k}^{2}+\frac{1}{4}£©¡Á3=4{k}^{2}-3£¾0$µÃ£º$k£¼-\frac{\sqrt{3}}{2}$»ò$k£¾\frac{\sqrt{3}}{2}$¢Ù
ÓÖ0¡ã£¼¡ÏAOB£¼90¡ã?£»cos¡ÏAOB£¾0cos¡ÏAOB£¾0?$\overrightarrow{OA}•\overrightarrow{OB}£¾0$
¡à$\overrightarrow{OA}•\overrightarrow{OB}={x}_{1}{x}_{2}+{y}_{1}{y}_{2}£¾0$
ÓÖy1y2=£¨kx1+2£©£¨kx2+2£©
=k2x1x2+2k£¨x1+x2£©+4
=$\frac{3{k}^{2}}{{k}^{2}+\frac{1}{4}}+\frac{-8{k}^{2}}{{k}^{2}+\frac{1}{4}}+4=\frac{-{k}^{2}+1}{{k}^{2}+\frac{1}{4}}$
¡ß$\frac{3}{{k}^{2}+\frac{1}{4}}+\frac{-{k}^{2}+1}{{k}^{2}+\frac{1}{4}}£¾0$
¼´k2£¼4£¬¡à-2£¼k£¼2¢Ú
¹ÊÓÉ¢Ù¡¢¢ÚµÃ£º
$-2£¼k£¼-\frac{\sqrt{3}}{2}$»ò$\frac{\sqrt{3}}{2}£¼k£¼2$

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÖ±Ïß¡¢ÍÖÔ²¡¢Æ½ÃæÏòÁ¿µÄÊýÁ¿»ýµÈ»ù´¡ÖªÊ¶£¬ÒÔ¼°×ÛºÏÓ¦ÓÃÊýѧ֪ʶ½â¾öÎÊÌâ¼°ÍÆÀí¼ÆËãÄÜÁ¦£®±¾ÌâΪÖеµÌ⣬ÐèÒªÊìÁ·ÔËÓÃÉè¶ø²»ÇóΤ´ï¶¨Àí£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÔÚÊýÁÐ{an}ÖУ¬SnÊÇÆäǰnÏîºÍ£¬ÇÒ${S_n}={2^n}-1$£¬Ôò${a_1}^2+{a_3}^2+{a_5}^2+¡­+{a_{2n-1}}^2$=$\frac{{16}^{n}-1}{15}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑ֪˫ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄÒ»¸ö½¹µãÓëÅ×ÎïÏßy2=4$\sqrt{10x}$µÄ½¹µãÖØºÏ£¬ÇÒË«ÇúÏßµÄÀëÐÄÂʵÈÓÚ$\frac{{\sqrt{10}}}{3}$£¬Ôò¸ÃË«ÇúÏߵķ½³ÌΪ£¨¡¡¡¡£©
A£®x2-$\frac{y^2}{9}$=1B£®x2-y2=15C£®$\frac{x^2}{9}-{y^2}$=1D£®x2-y2=9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®¡÷ABCµÄ¶¥µãAÔÚÔ²O£ºx2+y2=1ÉÏ£¬B£¬CÁ½µãÔÚÖ±Ïß$\sqrt{3}$x+y+3=0ÉÏ£¬Èô|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=4£¬Ôò¡÷ABCÃæ»ýµÄ×îСֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®¶¯µãPµ½¶¨µãD£¨1£¬0£©µÄ¾àÀëÓëµ½Ö±Ïßl£ºx=-1µÄ¾àÀëÏàµÈ£¬¶¯µãPÐγÉÇúÏß¼Ç×÷C£®
£¨1£©Ç󶯵ãPµÄ¹ì¼£·½³Ì
£¨2£©¹ýµãQ£¨4£¬1£©×÷ÇúÏßCµÄÏÒAB£¬Ç¡±»Qƽ·Ö£¬ÇóABËùÔÚÖ±Ïß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®É輯ºÏA={-1£¬0£¬1£¬2}£¬B={x|x2£¾x}£¬Ôò¼¯ºÏA¡ÉB={-1£¬2}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬ÇÒan=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$£®
£¨1£©ÇóÖ¤£º{$\frac{1}{{S}_{n}}$}ÊǵȲîÊýÁУ»
£¨2£©Çóan¼°Sn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÔòÊä³öµÄ½á¹ûΪ£¨¡¡¡¡£©
A£®1006B£®1008C£®2015D£®2016

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÔÚ¡÷ABCÖУ¬EΪACÉÏÒ»µã£¬ÇÒ$\overrightarrow{AC}=4\overrightarrow{AE}$£¬PΪBEÉÏÒ»µã£¬ÇÒ$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC}$£¨m£¾0£¬n£¾0£©£¬Ôò$\frac{1}{m}+\frac{1}{n}$È¡×îСֵʱ£¬ÏòÁ¿$\overrightarrow{a}$=£¨m£¬n£©µÄģΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{5}}}{4}$B£®$\frac{{\sqrt{6}}}{6}$C£®$\frac{{\sqrt{5}}}{6}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸