精英家教网 > 高中数学 > 题目详情
17.执行如图所示的程序框图,则输出的结果为(  )
A.1006B.1008C.2015D.2016

分析 根据程序框图进行模拟计算即可.

解答 解:当i是奇数时,$\frac{i}{2}$的余数是1>0,S=12+…+i2
当i是偶数时,$\frac{i}{2}$的余数0>0不成立,S=-22-…-i2
故程序是计算S=$\frac{1}{2015}$(12-22+32-42+…-20142+20152
=$\frac{1}{2015}$[1+(32-22)+…+(20152-20142)]
=$\frac{1}{2015}$(1+5+9+…+4029)
=$\frac{1}{2015}$×$\frac{(1+4029)×1008}{2}$
=$\frac{1}{2015}$×$\frac{4030×1008}{2}$=1008,
故选:B

点评 本题主要考查程序框图的识别和判断,根据条件读懂程序是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高,单位:cm),分组情况如表:
分组151.5~158.5158.5~165.5165.5~172.5172.5~179.5
频数621276
频率0.10.35a0.1
则表中的a=0.45.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.中心在坐标原点,其中一个焦点为($\sqrt{3}$,0),离心率为$\frac{\sqrt{3}}{2}$椭圆的左、右焦点为F1,F2
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P是该椭圆上的一个动点,求$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最大值和最小值;
(Ⅲ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且a1=2,lg[(n+1)an+1]-lg[(n+2)an]-lg2=0(n∈N*).
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ) 设Pn=$\frac{S_n}{{2{a_n}}}$,Tn=$\sqrt{\frac{{1-{P_n}}}{{1+{P_n}}}}$,求证:P1•P3•P5…P2n-1<Tn<$\sqrt{2}sin{T_n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中个抽出500 件,量其内径尺寸的结果如下表(表1为甲厂,表2为乙 厂):
表1
分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)
频数297185159766218
表2
分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)
频数12638618292614
(1)试分别估计两个分厂生产的零件的优质品率;
(2)由于以上统计数据填下面2×2列联表(填写在答题卡的2×2列联表中),并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}、{bn}中,对任何正整数n都有:a1bn+a2bn-1+a3bn-2…+an-1b2+anb1=2n+1-n-2.
(1)若数列{an}是首项和公差都是1的等差数列,求b1,b2,并证明数列{bn}是等比数列;
(2)若数列{bn}是等比数列,数列{an}是否是等差数列,若是请求出通项公式,若不是请说明理由;
(3)若数列{an}是等差数列,数列{bn}是等比数列,求证:$\frac{1}{{a}_{1}{b}_{1}}$+$\frac{1}{{a}_{2}{b}_{2}}$+…+$\frac{1}{{a}_{n}{b}_{n}}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:y2=4x的焦点为F,过F的直线l与抛物线C交于A,B两点.
(1)已知点M(-1,0),且$\overrightarrow{MA}•\overrightarrow{MB}$=0,求|AB|;
(2)已知点N(0,1),△NFB的面积是△NFA的面积的2倍,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,AB是圆O的直径,C是圆O上异于A,B的一个动点,DC垂直于圆O所在的平面,DC∥EB,DC=EB=1,AB=4.
(Ⅰ)求证:DE⊥平面ACD;
(Ⅱ)当三棱锥C-ADE体积最大时,求平面AED与平面ABE所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.以下五个命题:
①“事件A,B是互斥事件”是“事件A,B是对立事件”的充分不必要条件;
②设y=f(x)是R上的任意函数,则函数h(x)=f(x)-f(-x)是偶函数;
③函数f(x)=2x+x3-2在区间(0,1)内有一个零点;
④若$\frac{1}{x}$+$\frac{9}{y}$=1(x,y∈R+),则x+y的最小值为12;
⑤若干个能唯一确定一个数列的量称为该数列的“基量”;若{an}是公比为q的无穷等比数列,则“S1与S2”与“q与an”(其中n为大于1的整数,Sn为{an}的前n项和)均为数列{an}的“基量”.
其中的真命题对应的序号为③⑤.

查看答案和解析>>

同步练习册答案