分析 (1)化简f(x)为cosx的二次函数,用换元法令t=cosx,从而求出f(x)的值域;
(2)根据正切函数的定义域和单调性,即可求出函数$y=tan(\frac{x}{2}+\frac{π}{3})$的定义域和单调增区间.
解答 解:(1)f(x)=1-cos2x+cosx+1
=-cos2x+cosx+2,
令t=cosx,则t∈[0,1],
则 y=-t2+t+2,t∈[0,1];
所以当t=0或1时,ymin=2;
当$t=\frac{1}{2}$时,${y_{max}}=\frac{9}{4}$;
所以f(x)的值域是$[2,\frac{9}{4}]$;
(2)∵函数$y=tan(\frac{x}{2}+\frac{π}{3})$,
令$\frac{x}{2}+\frac{π}{3}≠\frac{π}{2}+kπ$,
解得$x≠\frac{π}{3}+2kπ,k∈z$;
所以$y=tan(\frac{x}{2}+\frac{π}{3})$的定义域为$\left\{{\left.x\right|x≠\frac{π}{3}+2kπ,k∈z}\right\}$;
令$t=\frac{x}{2}+\frac{π}{3}$,
由y=tant在$({-\frac{π}{2}+kπ,\frac{π}{2}+kπ})$,k∈Z内单调递增,
令-$\frac{π}{2}$+kπ<$\frac{x}{2}$+$\frac{π}{3}$<$\frac{π}{2}$+kπ,k∈Z,
解得-$\frac{5π}{3}$+2kπ<x<$\frac{π}{3}$+2kπ,k∈Z,
所以$y=tan(\frac{x}{2}+\frac{π}{3})$在(-$\frac{5π}{3}$+2kπ,$\frac{π}{3}$+2kπ),k∈Z上单调递增.
点评 本题考查了三角函数的图象与性质的应用问题,也考查了求复合函数的值域问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日最高气温t(单位:℃) | t≤22℃ | 22℃<t≤28℃ | 28℃<t≤32℃ | t>32℃ |
| 天数 | 6 | 12 | X | Y |
| 高温天气 | 非高温天气 | 合计 | |
| 旺销 | 2 | 22 | 24 |
| 不旺销 | 4 | 2 | 6 |
| 合计 | 6 | 24 | 30 |
| P(K2≥k) | 0.10 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com