精英家教网 > 高中数学 > 题目详情
11.(1)求函数f(x)=sin2x+cosx+1,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域.
(2)求函数$y=tan(\frac{x}{2}+\frac{π}{3})$的定义域和单调区间.

分析 (1)化简f(x)为cosx的二次函数,用换元法令t=cosx,从而求出f(x)的值域;
(2)根据正切函数的定义域和单调性,即可求出函数$y=tan(\frac{x}{2}+\frac{π}{3})$的定义域和单调增区间.

解答 解:(1)f(x)=1-cos2x+cosx+1
=-cos2x+cosx+2,
令t=cosx,则t∈[0,1],
则 y=-t2+t+2,t∈[0,1];
所以当t=0或1时,ymin=2;
当$t=\frac{1}{2}$时,${y_{max}}=\frac{9}{4}$;
所以f(x)的值域是$[2,\frac{9}{4}]$;
(2)∵函数$y=tan(\frac{x}{2}+\frac{π}{3})$,
令$\frac{x}{2}+\frac{π}{3}≠\frac{π}{2}+kπ$,
解得$x≠\frac{π}{3}+2kπ,k∈z$;
所以$y=tan(\frac{x}{2}+\frac{π}{3})$的定义域为$\left\{{\left.x\right|x≠\frac{π}{3}+2kπ,k∈z}\right\}$;
令$t=\frac{x}{2}+\frac{π}{3}$,
由y=tant在$({-\frac{π}{2}+kπ,\frac{π}{2}+kπ})$,k∈Z内单调递增,
令-$\frac{π}{2}$+kπ<$\frac{x}{2}$+$\frac{π}{3}$<$\frac{π}{2}$+kπ,k∈Z,
解得-$\frac{5π}{3}$+2kπ<x<$\frac{π}{3}$+2kπ,k∈Z,
所以$y=tan(\frac{x}{2}+\frac{π}{3})$在(-$\frac{5π}{3}$+2kπ,$\frac{π}{3}$+2kπ),k∈Z上单调递增.

点评 本题考查了三角函数的图象与性质的应用问题,也考查了求复合函数的值域问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{x+a}{x-3}$的图象过点(0,-1).
(1)求实数a的值;
(2)若f(x)=m+$\frac{n}{x-3}$(m,n是常数),求实数m,n的值;
(3)用定义法证明:函数f(x)在(3,+∞)上是单调减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.i是虚数单位,复数z=${({\frac{3-i}{1+i}})^2}$,则复数z的共轭复数表示的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若(ax-1)9=a0+a1x+a2x2+…+a9x9,且a0+a1+a2+…+a9=0,则a3=84.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若抛物线y2=2px(p>0)上的点A(x0,$\sqrt{2}$)到其焦点的距离是A到y轴距离的3倍,则p等于(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在矩阵A的变换下,坐标平面上的点的横坐标伸长到原来的3倍,纵坐标不变.
(1)求矩阵A及A-1
(2)求圆x2+y2=4在矩阵A-1的变换下得到的曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知tanα=2,tanβ=3,则tan(α+β)=(  )
A.1B.-1C.$\frac{1}{7}$D.$-\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.气象部门提供了某地区今年六月份(30天)的日最高气温的统计表如表:
日最高气温t(单位:℃)t≤22℃22℃<t≤28℃28℃<t≤32℃t>32℃
天数612XY
由于工作疏忽,统计表被墨水污染,Y和X数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.8.
(Ⅰ)求X,Y的值;
(Ⅱ)把日最高气温高于32℃称为本地区的“高温天气”,根据已知条件完成下面2×2列联表,并据此推测是否有95%的把握认为本地区的“高温天气”与冷饮“旺销”有关?说明理由.
高温天气非高温天气合计
旺销22224        
不旺销426
合计62430
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.100.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C的对边分别为a,b,c,已知$A={60°},b=4,{S_{△ABC}}=4\sqrt{3}$,则a=4.

查看答案和解析>>

同步练习册答案