精英家教网 > 高中数学 > 题目详情

若关于x的不等式|x+1|-|x-2|<a2-4a有实数解,则实数a的取值范围为


  1. A.
    (-∞,1)∪(3,+∞)
  2. B.
    (1,3)
  3. C.
    (-∞,-3)∪(-1,+∞)
  4. D.
    (-3,-1)
A
解析:

分析:根据绝对值的几何意义,|x+1|-|x-2|表示数轴上的x对应点到-1表示的点的距离减去它到2表示的点的距离,最小值等于-3,故有a2-4a>-3,解出实数a的取值范围.
解答:|x+1|-|x-2|表示数轴上的x对应点到-1的距离减去它到2的距离,它的最大值为3,最小值等于-3,a2-4a>-3,a2-4a+3>0,∴a>3,或 a<1,故实数a的取值范围为 (-∞,1)∪(3,+∞),故选A.
点评:本题考查绝对值得意义,绝对值不等式的解法,利用a2-4a大于|x+1|-|x-2|的最小值,求出实数a的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A.(不等式选做题)若关于x的不等式|x+3|-|x+2|≥log2a有解,则实数a的取值范围是:
 

B.(几何证明选做题)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若
PB
PA
=
1
2
PC
PD
=
1
3
,则
BC
AD
的值为
 

C.(坐标系与参数方程选做题)设曲线C的参数方程为
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
2
cosθ-sinθ
,则曲线C上到直线l距离为
2
的点的个数为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数,且函数y=f(x)和y=g(x)的图象在其与两坐标轴的交点处的切线相互平行.若关于x的不等式
x-m
g(x)
x
对任意不等于1的正实数都成立,则实数m的取值集合是
{1}
{1}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•潍坊二模)若关于x的不等式|x+2|+|x-1|>log2a的解集为R,则实数a的取值范围是
(0,8)
(0,8)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建模拟)设a>0,若关于x的不等式x+
a
x-1
≥5在x∈(1,+∞)恒成立,则a的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉安二模)若关于x的不等式|x+1|+|x-m|>4的解集为R,则实数m的取值范围
{m|m>3或m<-5}
{m|m>3或m<-5}

查看答案和解析>>

同步练习册答案