精英家教网 > 高中数学 > 题目详情
如图所示,已知长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的点,且CE=1.
(1)求证BE⊥B1C;
(2)求直线A1B与直线B1C所成角的正弦值.
(1)如图所示,以D为原点,DA、DC、DD1所在直线分别为x、y、z轴建立空间直角坐标系D-xyz,
则可得D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),
A1(2,0,4),B1(2,2,4),C1(0,2,4),D1(0,0,4),E(0,2,1),
BE
=(-2,0,1),
B1C
=(-2,0,-4).
BE
B1C
=4+0-4=0
∴BE⊥B1C
(2)由(1)可得
B1C
=(-2,0,-4),
A1B
=(0,2,-4),
∴cos<
A1B
B1C
>=
A1B
B1C
|
A1B
||
B1C
|
=
16
20
20
=
4
5

∴二直线成角的正弦值为
3
5

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为1的正方体A1B1C1D1-ABCD中,
(1)求直线B1D与平面A1BC1所成的角;
(2)求点A到面A1BC1的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点,PA=PD=AD=2.
(Ⅰ)求证:AD⊥平面PQB;
(Ⅱ)点M在线段PC上,PM=tPC,试确定t的值,使PA平面MQB;
(Ⅲ)若PA平面MQB,平面PAD⊥平面ABCD,求二面角M-BQ-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点.
(1)在棱AA1上是否存在一点P,使得DP平面B1AE?若存在,求AP的长;若不存在,说明理由.
(2)若二面角A-B1E-A1的大小为30°,求AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD为正方形,PA⊥面ABCD,且PA=AB=4,E为PD中点.
(1)证明:PB平面AEC;
(2)证明:平面PCD⊥平面PAD;
(3)求二面角E-AC-D的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.
(1)求证:BD⊥PC;
(2)设E为PC的中点,点F在线段AB上,若直线EF平面PAD,求AF的长;
(3)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AA1=AB=BC=3,AC=2,D是AC的中点.
(Ⅰ)求证:B1C平面A1BD;
(Ⅱ)求二面角A1-BD-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2014·沈阳调研]如图,空间四边形OABC中,=a,=b,=c.点M在OA上,且OM=2MA,N为BC的中点,则等于(  )
A.a-b+c
B.-a+b+c
C.a+b-c
D.a+b-c

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为直线,为平面,给出下列命题:
 ② ③ ④
其中的正确命题序号是:
A ③④              B  ②③      C ①②         D ①②③④

查看答案和解析>>

同步练习册答案