精英家教网 > 高中数学 > 题目详情
若不等式f(x)≤0的解集是[-2,3],不等式g(x)≤0的解集是φ,且f(x),g(x)中,x∈R,则不等式
f(x)g(x)
>0
的解集为
(-∞,-2)∪(3,+∞)
(-∞,-2)∪(3,+∞)
分析:先由题意知:不等式f(x)>0的解集是(-∞,-2)∪(3,+∞),不等式g(x)>0的解集是R,再将原不等式
f(x)
g(x)
>0
?
f(x)>0
g(x)>0
f(x)<0
g(x)<0
,利用分类讨论思想求出不等式
f(x)
g(x)
>0
的解集即可.
解答:解:由题意知:不等式f(x)≤0的解集是[-2,3],不等式g(x)≤0的解集是φ,
不等式f(x)>0的解集是(-∞,-2)∪(3,+∞),不等式g(x)>0的解集是R,
∵不等式
f(x)
g(x)
>0
?
f(x)>0
g(x)>0
f(x)<0
g(x)<0

则不等式
f(x)
g(x)
>0
的解集为:(-∞,-2)∪(3,+∞),或φ,
即(-∞,-2)∪(3,+∞),
故答案为:(-∞,-2)∪(3,+∞)
点评:本小题主要考查其他不等式的解法,主要是抽象不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=|x-a|+3x,其中a>0.
(Ⅰ)当a=1时,求不等式的f(x)≥3x+2解集;
(Ⅱ)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=3x2-2ax+a2-1.
(1)若f(
1
2
)≥0,求a的取值范围;
(2)若不等式f(x)≤0在x∈[
1
3
1
2
]上恒成立,求a的取值范围;
(3)若x∈(a,+∞),求不等式f(x)≥0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a(x-
1x
)-2lnx.(a∈R)
(Ⅰ)曲线y=f(x)在点(1,f(1))处的切线方程是2x-y+b=0,求a,b的值;
(Ⅱ)若不等式f(x)≥0在[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x2x-1+21-x
+a
(a∈R)
(1)若f(1)=1,求实数a的值并计算f(-1)+f(3)的值;
(2)若不等式f(x)≥0对任意的x∈[1,+∞)恒成立,求实数a的取值范围;
(3)当a=-1时,设g(x)=f(x+b),是否存在实数b使g(x)为奇函数.若存在,求出b的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2+(1-
2
2
)x-
2
2
≤0}
B={x|x2-(1-
2
2
)x-
2
2
≤0}
,又设函数f(x)=2x2+mx-1.
(1)若不等式f(x)≤0的解集为C,且C⊆(A∪B),求实数m的取值范围.
(2)若对任意x∈R,有f(1-x)=f(1+x)成立,试求当x∈(A∩B)时,函数f(x)的值域.
(3)当m∈(A∪B),x∈(A∩B)时,求证:|f(x)|≤
9
8

查看答案和解析>>

同步练习册答案