精英家教网 > 高中数学 > 题目详情
已知函数f(x)=a(x-
1x
)-2lnx.(a∈R)
(Ⅰ)曲线y=f(x)在点(1,f(1))处的切线方程是2x-y+b=0,求a,b的值;
(Ⅱ)若不等式f(x)≥0在[1,+∞)恒成立,求实数a的取值范围.
分析:(Ⅰ)曲线y=f(x)在点(1,f(1))处的切线斜率为f′(1)=2,利用直线的点斜式方程可求a,b
(Ⅱ)对a进行分类讨论,探讨出f(x)在[1,+∞)上的增减性,通过与特殊值、极值的比较作出解答.
解答:解:(Ⅰ)函数f(x)的定义域是{x|x>0}.f′(x)=a(1+
1
x2
)-
2
x
,∵f(1)=0,∴切点为(1,0),带入切线方程2x-y+b=0得出b=-2
又f′(1)=2a-2=2,解得a=2
(Ⅱ)f′(x)=a(1+
1
x2
)-
2
x
,(x≥1)
(1)当a≤0时,f′(x)<0,此时函数f(x)单调递减,又f(1)=0,所以f(x)≤0,其与条件f(x)≥0在[1,+∞)恒成立矛盾,故舍去.
 (2)当0<a<1时,f'(x)=a(1+
1
x2
)-
2
x
=
ax2-2x+a
x2
在[1,
1
a
)上满足f'(x)<0,此时函数f(x)单调递减,又f(1)=0,所以f(x)≤0,其与条件f(x)≥0在[1,+∞)恒成立矛盾,故舍去.
(3)当a≥1时,a(1+
1
x2
)≥1+
1
x2
2
x
,f'(x)≥0,此时函数f(x)单调递增,又f(1)=0,所以f(x)≥0.
故实数a的取值范围是a≥1.…(12分)
点评:本题考查会利用导数的几何意义求切线方程,函数的单调性,理解函数恒成立时所取的条件,数形结合的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案