分析 求出圆C1:(x+4)2+(y-3)2=5关于x轴的对称圆C的方程,|MA|+|MB|的最小值是圆C与圆C2的公切线长度,
即可得出结论.
解答 解:圆C1:(x+4)2+(y-3)2=5关于x轴的对称圆C的方程为(x+4)2+(y+3)2=5,
∴|MA|+|MB|的最小值是圆C与圆C2的公切线长度,
∵圆心距为$\sqrt{(2+4)^{2}+(7+3)^{2}}$=$\sqrt{136}$,
∴公切线长度=$\sqrt{136-(\sqrt{5}+\sqrt{13})^{2}}$=$\sqrt{118-2\sqrt{65}}$,
故答案为$\sqrt{118-2\sqrt{65}}$.
点评 本题考查圆与圆,直线与圆的位置关系,考查学生的计算能力,正确转化是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com