精英家教网 > 高中数学 > 题目详情
(本题满分16分)
如图,椭圆C:=1(a>b>0)的焦点F1,F2和短轴的一个端点A构成等边三角形,
点()在椭圆C上,直线l为椭圆C的左准线.
(1) 求椭圆C的方程;
(2) 点P是椭圆C上的动点,PQ ⊥l,垂足为Q.
是否存在点P,使得△F1PQ为等腰三角形?
若存在,求出点P的坐标;若不存在,说明理由.
(1) + =1.(2)存在点P(-,±),使△PF1Q为等腰三角形
本题主要考查了椭圆的标准方程.考查了学生综合分析问题和解决问题的能力
(Ⅰ)设出椭圆方程,根据△AF1F2为正三角形可推断出a和b的关系,设b2=3λ,a2=4λ,代入椭圆方程,进而把点()代入即可求得λ,则椭圆的方程可得.
(Ⅱ)根据(1)可求得椭圆的离心率,进而求得PF1和PQ的关系,假设PF1=F1Q根据PF1= PQ推断出PF1+F1Q=PQ,与“三角形两边之和大于第三边”矛盾,假设不成立,再看若F1Q=PQ,设出P点坐标,则Q点坐标可得,进而表示出F1Q和PQ求得x和y的关系,与椭圆方程联立求得P点坐标.判断出存在点P,使得△PF1Q为等腰三角形。
(1)椭圆C的方程为=1(a>b>0),由已知△AF1F2为正三角形,所以
sin∠AF1O=,所以
设b2=3λ,a2=4λ,椭圆方程为=λ.
椭圆经过点(),解得λ=1,所以椭圆C的方程为 + =1.
(2)由=e=,得PF1PQ.所以PF1≠PQ.
①若PF1=F1Q,则PF1+F1Q=PQ,与“三角形两边之和大于第三边”矛盾,
所以PF1不可能与PQ相等
②若F1Q=PQ,设P(x,y)(x≠±2),则Q(-4,y).∴=4+x,
∴9+y2=16+8x+x2,又由=1,得y2=3-x2
∴9+3-x2=16+8x+x2,∴x2+8x+4=0.
∴7x2+32x+16=0.∴x=-或x=-4.
因为x∈(-2,2),所以x=-.所以P(-,±).
存在点P(-,±),使△PF1Q为等腰三角形
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)设椭圆与抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:












 
1)求的标准方程, 并分别求出它们的离心率
2)设直线与椭圆交于不同的两点,且(其中坐标原点),请问是否存在这样的直线过抛物线的焦点若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线与椭圆相交于两点,该椭圆上点使的面积等于6,这样的点共有(   )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设点是曲线上的点,,则(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆=1的右焦点到直线y=x的距离是                    (  )
A.     B.C.1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 求满足下列条件的椭圆的标准方程.
(1)焦点在坐标轴上,且经过两点
(2)经过点(2,-3)且与椭圆具有共同的焦点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线,椭圆,直线与椭圆的公共点的个数为(      )
A. 1个B.1个或者2个C. 2个D. 0个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆上的一点,为焦点,,则的面积为(  )
A.   B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为( )
A.B.C.D.

查看答案和解析>>

同步练习册答案