精英家教网 > 高中数学 > 题目详情
直线,椭圆,直线与椭圆的公共点的个数为(      )
A. 1个B.1个或者2个C. 2个D. 0个
C
要分析直线与椭圆的公共点的个数,只要联立方程组,结合判别似的情况来得到结论,因为联立后判别式大于零,则必然有两个不同的交点,故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(I) 已知抛物线过焦点的动直线l交抛物线于A,B两点,O为坐标原点, 求证: 为定值;
(Ⅱ)由 (Ⅰ) 可知: 过抛物线的焦点的动直线 l 交抛物线于两点, 存在定点, 使得为定值. 请写出关于椭圆的类似结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在椭圆(a>)中,记左焦点为F,右顶点为A,短轴上方的端点为B,若角,则椭圆的离心率为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,F1、F2分别是椭圆的左、右焦点,A和B是以O(O为坐标原点)为圆心,以|OF1|为半径的圆与该椭圆的两个交点,且△F2AB是等边三角形,则椭圆的离心率为(  )
A.B.C.-1 D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)
如图,椭圆C:=1(a>b>0)的焦点F1,F2和短轴的一个端点A构成等边三角形,
点()在椭圆C上,直线l为椭圆C的左准线.
(1) 求椭圆C的方程;
(2) 点P是椭圆C上的动点,PQ ⊥l,垂足为Q.
是否存在点P,使得△F1PQ为等腰三角形?
若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的左右焦点分别为,P为C的右支上一点,且=,△的面积等于(   )
A.24B.36C.48D.96

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的一个焦点为F,若椭圆上存在点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某公园内有一椭圆形景观水池,经测量知,椭圆长轴长为20米,短轴长为16米,现以椭圆长轴所在直线为轴,短轴所在直线为轴,建立平面直角坐标系,如图所示:

(1)为增加景观效果,拟在水池内选定两点安装水雾喷射口,要求椭圆上各点到这两点距离之和都相等,请指出水雾喷射口的位置(用坐标表示),并求椭圆的方程。
(2)为了增加水池的观赏性,拟划出一个以椭圆的长轴顶点A、短轴顶点B及椭圆上某点M构成的三角形区域进行夜景灯光布置,请确定点M的位置,使此三角形区域面积最大。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分) 若椭圆过点,离心率为,⊙O的圆心在原点,直径为椭圆的短轴,⊙M的方程为,过⊙M上任一点P作⊙O的切线PA、PB,切点为A、B.
(1) 求椭圆的方程;
(2)若直线PA与⊙M的另一交点为Q,当弦PQ最大时,求直线PA的方程。

查看答案和解析>>

同步练习册答案