精英家教网 > 高中数学 > 题目详情
椭圆=1的右焦点到直线y=x的距离是                    (  )
A.     B.C.1D.
B

试题分析:由于椭圆=1的几何性质可知a=2,b=,结合a,b,c的关系式,那么焦点的位置根据方程中4>3,说明焦点在x轴上,且为(1,0),而直线方程y=x的化为的一般式为x—y=0的,代入点到直线的距离公式中
,故可知选B.
点评:解决该试题的关键是通过已知条件得到椭圆的有焦点,代入点到直线的距离公式中求解即可。易错点就是a,b,c的平方关系的准确运用。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,椭圆的左焦点为,右焦点为,离心率.过的直线交椭圆于两点,且△的周长为

(Ⅰ)求椭圆的方程.
(Ⅱ)设动直线与椭圆有且只有一个公共点,且与直线相交于点.试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(I) 已知抛物线过焦点的动直线l交抛物线于A,B两点,O为坐标原点, 求证: 为定值;
(Ⅱ)由 (Ⅰ) 可知: 过抛物线的焦点的动直线 l 交抛物线于两点, 存在定点, 使得为定值. 请写出关于椭圆的类似结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知, 是椭圆的两个焦点,点在此椭圆上且,则的面积等于(    )
A.B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在直角坐标平面内,已知点,动点满足条件:,则点的轨迹方程是(    ).
A.B.C.()D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,F1、F2分别是椭圆的左、右焦点,A和B是以O(O为坐标原点)为圆心,以|OF1|为半径的圆与该椭圆的两个交点,且△F2AB是等边三角形,则椭圆的离心率为(  )
A.B.C.-1 D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)
如图,椭圆C:=1(a>b>0)的焦点F1,F2和短轴的一个端点A构成等边三角形,
点()在椭圆C上,直线l为椭圆C的左准线.
(1) 求椭圆C的方程;
(2) 点P是椭圆C上的动点,PQ ⊥l,垂足为Q.
是否存在点P,使得△F1PQ为等腰三角形?
若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的一个焦点为F,若椭圆上存在点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案