精英家教网 > 高中数学 > 题目详情
(本小题满分14分)设椭圆与抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:












 
1)求的标准方程, 并分别求出它们的离心率
2)设直线与椭圆交于不同的两点,且(其中坐标原点),请问是否存在这样的直线过抛物线的焦点若存在,求出直线的方程;若不存在,请说明理由.
(1)。(2)

试题分析:(1)∵焦点在x轴上,且椭圆与抛物线的中心与顶点在原点,又过点
故点在椭圆上,点在抛物线

∴点上,

把点代入得

由抛物线
(2)由
若l与x轴垂直,则l:x=1

不满足
若存在直线l不与x轴垂直,可设为



    

      
所求的直线为
点评:(1)做第一问的关键是确定哪两个点在椭圆上,哪两个点在抛物线上。(2)在求直线与圆锥曲线相交的有关问题时,通常采用设而不求的方法,在求解过程中一般采取步骤为:设点→联立方程→消元→韦达定理。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆的左焦点为F, 离心率为, 过点F且与x轴垂直的直线被椭圆截得的线段长为.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设A, B分别为椭圆的左右顶点, 过点F且斜率为k的直线与椭圆交于C, D两点. 若, 求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的离心率,其中一个顶点坐标为,则椭圆的方程为                      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线上任意一点到两个定点的距离之和为4.
(1)求曲线的方程;
(2)设过(0,-2)的直线与曲线交于两点,且为原点),求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知, 是椭圆的两个焦点,点在此椭圆上且,则的面积等于(    )
A.B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆的两个焦点,点M在椭圆上,若△是直角三角形,则△的面积等于(  )
A.48/5B.36/5C.16D.48/5或16

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在椭圆(a>)中,记左焦点为F,右顶点为A,短轴上方的端点为B,若角,则椭圆的离心率为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆的离心率为,焦点在轴上,且长轴长为10,曲线上的点与椭圆的两个焦点的距离之差的绝对值等于4.
(1)求椭圆的标准方程;
(2)求曲线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)
如图,椭圆C:=1(a>b>0)的焦点F1,F2和短轴的一个端点A构成等边三角形,
点()在椭圆C上,直线l为椭圆C的左准线.
(1) 求椭圆C的方程;
(2) 点P是椭圆C上的动点,PQ ⊥l,垂足为Q.
是否存在点P,使得△F1PQ为等腰三角形?
若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案