精英家教网 > 高中数学 > 题目详情
13.如图是用计算机随机模拟的方法估计概率的程序框图,P表示估计结果,则输出的P的近似值为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{4}$

分析 由题意以及框图的作用,直接计算出结果.

解答 解:根据题意可知该程序框图是在区域$A=\left\{{(x,y)\left|{\left\{\begin{array}{l}-2≤x≤2\\-2≤y≤2\end{array}\right.}\right.}\right\}$内随机产生2017个点,
其中在区域B={(x,y)2|x|+|y|≤2}内的点的个数记为M,计算并输出$P=\frac{M}{2017}$的值.
分别作出区域A,B,其中区域A是边长为4的正方形,区域B是对角线长分别为2和4的菱形.

根据几何概型概率计算公式可得,输出的P的近似值为$\frac{4}{16}=\frac{1}{4}$.
故选:B.

点评 本题考查程序框图的作用,考查计算、分析能力,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知△ABC的三个顶点是A(4,0),B(6,5),C(0,3).
(1)求BC边上的高所在直线的方程;
(2)求BC边上的中线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知0<θ<π,且sinθ+cosθ=-$\frac{1}{5}$,求tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知a,t为正实数,函数f(x)=x2-2x+a,且对任意的x∈[0,t]都有f(x)∈[-a,a].若对每一个正实数a,记t的最大值为g(a),则$g(1)+g(\frac{3}{8})$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若圆x2+y2-4x-4y-10=0上恰有2个不同的点到直线l:y=x+b(b>0)的距离为2$\sqrt{2}$,则正数b的取值范围为(  )
A.(0,2)B.(0,2]C.(2,10)D.[2,10]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解下列关于x的不等式
(1)$\frac{{{x^2}+1}}{x-1}≥x+\frac{5}{x-1}+3$ 
(2)ax2-(a+2)x+2≤0(其中a>0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.关于函数f(x)=$\frac{2}{x}$+lnx,下列说法错误的是(  )
A.x=2是f(x)的极小值点
B.函数y=f(x)-x有且只有1个零点
C.存在正实数k,使得f(x)>kx恒成立
D.对任意两个不相等的正实数x1,x2,若f(x1)=f(x2),则x1+x2>4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆(x+1)2+(y-2)2=1上一点P到直线4x-3y-5=0的距离为d,则d的最小值为(  )
A.1B.2C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数$f(x)=lnx+\frac{k}{x},k∈R$.
(1)若曲线y=f(x)在点(e,f(e))处的切线与直线x-2=0垂直,求f(x)的单调区间(其中e为自然对数的底数);
(2)若对任意x1>x2>0,f(x1)-f(x2)<x1-x2恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案