精英家教网 > 高中数学 > 题目详情
18.解下列关于x的不等式
(1)$\frac{{{x^2}+1}}{x-1}≥x+\frac{5}{x-1}+3$ 
(2)ax2-(a+2)x+2≤0(其中a>0).

分析 (1)根据分式不等式的解法通过讨论分母的符号求出不等式的解集即可;
(2)分解因式化为(ax-2)(x-1)≤0,通过讨论a的范围,求出不等式的解集即可.

解答 解:(1)原不等式可化为:$\frac{{x}^{2}+1}{x-1}$≥$\frac{{x}^{2}+2x+2}{x-1}$,
x>1时,x2+1≥x2+2x+2,无解,
x<1时,x2+1≤x2+2x+2,解得:x≥-$\frac{1}{2}$,
故不等式的解集是{x|-$\frac{1}{2}$≤x<1};
(2)原不等式可化为(ax-2)(x-1)≤0
当$\frac{2}{a}>1$,即0<a<2时,解集为$\{x|1≤x≤\frac{2}{a}\}$
当$\frac{2}{a}=1$,即a=2时,解集为{1}
当$\frac{2}{a}<1$,即a>2时,解集为$\{x|\frac{2}{a}≤x≤1\}$
综上所述,0<a<2时,解集为{x|1≤x≤$\frac{2}{a}$},
a=2时,解集为{1},
a>2时,解集为$\{x|\frac{2}{a}≤x≤1\}$.

点评 本题考查了解方式不等式,考查分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+2ax+1,a≠0.
(Ⅰ) 当a=1时,解不等式f(x)>4;
(Ⅱ) 若函数f(x)在区间(1,2)上恰有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示.
求:(1)函数f(x)的解析式;
(2)函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.?x1∈(1,2),?x2∈(1,2)使得lnx1=x1+$\frac{1}{3}m{x_2}^3-m{x_2}$,则正实数m的取值范围是(  )
A.$({3-\frac{3}{2}ln2,+∞})$B.$[{3-\frac{3}{2}ln2,+∞})$C.[3-3ln2,+∞)D.(3-3ln2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图是用计算机随机模拟的方法估计概率的程序框图,P表示估计结果,则输出的P的近似值为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的首项a1=1,前n项和为Sn,且an+1=2an+1,n∈N*
(1)证明数列{an+1}是等比数列并求数列{an}的通项公式;
(2)证明:$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设集合A={1,2},B=(a+1,2),若A∪B={1,2,3},则实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C底面ABC,AA1=A1C=AC=AB=BC=2,且点O为AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求二面角A1-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.为了判定两个分类变量X和Y是否有关系,应用独立性检验法算得K2的观测值为6,驸临界值表如下:
 P(K2≥k0 0.050.01 0.005  0.001
 k0 3.841 6.6357.879  10.828
则下列说法正确的是(  )
A.有95%的把握认为“X和Y有关系”B.有99%的把握认为“X和Y有关系”
C.有99.5%的把握认为“X和Y有关系”D.有99.9%的把握认为
“X和Y有关系”

查看答案和解析>>

同步练习册答案