精英家教网 > 高中数学 > 题目详情
8.为了判定两个分类变量X和Y是否有关系,应用独立性检验法算得K2的观测值为6,驸临界值表如下:
 P(K2≥k0 0.050.01 0.005  0.001
 k0 3.841 6.6357.879  10.828
则下列说法正确的是(  )
A.有95%的把握认为“X和Y有关系”B.有99%的把握认为“X和Y有关系”
C.有99.5%的把握认为“X和Y有关系”D.有99.9%的把握认为
“X和Y有关系”

分析 根据K2=6≥3.841,对照临界值表,即可得出结论.

解答 解:依题意,K2=6,
且P(K2≥3.841)=0.05,
因此有95%的把握认为“X和Y有关”.
故选:A.

点评 本题考查了独立性检验的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.解下列关于x的不等式
(1)$\frac{{{x^2}+1}}{x-1}≥x+\frac{5}{x-1}+3$ 
(2)ax2-(a+2)x+2≤0(其中a>0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一个袋中装有黑球,白球和红球共n(n∈N*)个,这些球除颜色外完全相同.已知从袋中任意摸出1个球,得到黑球的概率是$\frac{2}{5}$.现从袋中任意摸出2个球.
(Ⅰ) 用含n的代数式表示摸出的2球都是黑球的概率,并写出概率最小时n的值.(直接写出n的值)
(Ⅱ) 若n=15,且摸出的2个球中至少有1个白球的概率是$\frac{4}{7}$,设X表示摸出的2个球中红球的个数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在数列{an}中,a1=1,an+1=2an+1
(I)求证数列{an+1}是等比数列;
(II)设cn=n•(an+1),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数$f(x)=lnx+\frac{k}{x},k∈R$.
(1)若曲线y=f(x)在点(e,f(e))处的切线与直线x-2=0垂直,求f(x)的单调区间(其中e为自然对数的底数);
(2)若对任意x1>x2>0,f(x1)-f(x2)<x1-x2恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.8与-7的等差中项为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若不等式kx2+kx-1≤0(k为实数)的解集为R,则直线kx+y-2=0的斜率的最大值等于(  )
A.2B.4C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若α,β∈(0,$\frac{π}{2}$),sin($\frac{α}{2}-β$)=-$\frac{1}{2}$,cos($α-\frac{β}{2}$)=$\frac{{\sqrt{3}}}{2}$,则α+β=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(a-$\frac{1}{2}$)x2+lnx(a为实数).
(1)当a=0时,求函数f(x)在区间[$\frac{1}{e}$,e]上的最大值和最小值;
(2)若对任意的x∈(1,+∞),g(x)=f(x)-2ax<0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案