精英家教网 > 高中数学 > 题目详情
13.8与-7的等差中项为$\frac{1}{2}$.

分析 a与b的中差中项为:$\frac{a+b}{2}$.

解答 解:8与-7的等差中项为:$\frac{8+(-7)}{2}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查等差中项的求法,是基础题,解题时要认真审题,注意等差中项的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的首项a1=1,前n项和为Sn,且an+1=2an+1,n∈N*
(1)证明数列{an+1}是等比数列并求数列{an}的通项公式;
(2)证明:$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2+(2a+1)x+b,其中a,b∈R.
(Ⅰ)当a=1,b=-4时,求函数f(x)的零点;
(Ⅱ)如果函数f(x)的图象在直线y=x+2的上方,证明:b>2;
(Ⅲ)当b=2时,解关于x的不等式f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x=3是函数y=alnx+x2-10x的一个极值点,则实数a=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.为了判定两个分类变量X和Y是否有关系,应用独立性检验法算得K2的观测值为6,驸临界值表如下:
 P(K2≥k0 0.050.01 0.005  0.001
 k0 3.841 6.6357.879  10.828
则下列说法正确的是(  )
A.有95%的把握认为“X和Y有关系”B.有99%的把握认为“X和Y有关系”
C.有99.5%的把握认为“X和Y有关系”D.有99.9%的把握认为
“X和Y有关系”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某校组织“中国诗词”竞赛,在“风险答题”的环节中,共为选手准备了A、B、C三类不同的题目,选手每答对一个A类、B类或C类的题目,将分别得到300分、200分、100分,但如果答错,则相应要扣去300分、200分、100分,根据平时训练经验,选手甲答对A类、B类或C类题目的概率分别为0.6、0.75、0.85,若腰每一次答题的均分更大一些,则选手甲应选择的题目类型应为B(填A、B或C)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}中,a2=-1,a6=7.
(1)求数列{an}的通项公式;
(2)若bn=($\frac{1}{2}$)nan,数列{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=a-$\frac{2}{{2}^{x}+1}$.
(1)求证:不论a为何实数,f(x)一定为增函数;
(2)确定a的值,使f(x)为奇函数,并求此时f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为了调查某地区一周外卖需求情况,用分层抽样方法从该地区调查了家庭,结果如下:
时间
是否需要外卖
周末非周末
需要4030
不需要160270
(1)估计该地区订餐,需要外卖的比例;
(2)能否在犯错误的概率不超过0.01的前提下认为该地区的外卖需求与时间有关;
(3)根据(2)的结论,能否提出更加的调查方法来估计该地区的外卖中,需要家庭的比例?说说理由?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.0500.0100.001
K3.8416.63510.828

查看答案和解析>>

同步练习册答案