精英家教网 > 高中数学 > 题目详情
5.已知等差数列{an}中,a2=-1,a6=7.
(1)求数列{an}的通项公式;
(2)若bn=($\frac{1}{2}$)nan,数列{bn}的前n项和为Sn,求Sn

分析 (1)等差数列{an}的公差为d,由等差数列的通项公式可得首项和公差的方程,解方程即可得到所求通项公式;
(2)求出bn=($\frac{1}{2}$)nan=(2n-5)•($\frac{1}{2}$)n,运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理即可得到所求和.

解答 解:(1)等差数列{an}的公差为d,a2=-1,a6=7,
可得a1+d=-1,a1+5d=7,
解得a1=-3,d=2,
则数列{an}的通项公式为an=a1+(n-1)d=-3+2(n-1)=2n-5,n∈N*;
(2)bn=($\frac{1}{2}$)nan=(2n-5)•($\frac{1}{2}$)n
前n项和为Sn=-3•$\frac{1}{2}$+(-1)•($\frac{1}{2}$)2+…+(2n-7)•($\frac{1}{2}$)n-1+(2n-5)•($\frac{1}{2}$)n
$\frac{1}{2}$Sn=-3•($\frac{1}{2}$)2+(-1)•($\frac{1}{2}$)3+…+(2n-7)•($\frac{1}{2}$)n+(2n-5)•($\frac{1}{2}$)n+1
相减可得,$\frac{1}{2}$Sn=-3•$\frac{1}{2}$+2[($\frac{1}{2}$)2+…+($\frac{1}{2}$)n-1]-(2n-5)•($\frac{1}{2}$)n+1
=-$\frac{3}{2}$+2•$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-(2n-5)•($\frac{1}{2}$)n+1
化简可得Sn=-1-(2n-1)•($\frac{1}{2}$)n

点评 本题考查等差数列的通项公式的运用,考查数列的求和方法:错位相减法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,在平面直角坐标系xOy中,边长为1的正△OAB的顶点A,B均在第一象限,设点A在x轴的射影为C,∠AOC=α.
(1)试将$\overrightarrow{OA}$•$\overrightarrow{CB}$表示α的函数f(α),并写出其定义域;
(2)求函数f(α)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在数列{an}中,a1=1,an+1=2an+1
(I)求证数列{an+1}是等比数列;
(II)设cn=n•(an+1),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.8与-7的等差中项为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若不等式kx2+kx-1≤0(k为实数)的解集为R,则直线kx+y-2=0的斜率的最大值等于(  )
A.2B.4C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.曲线f(x)=2alnx+bx(a>0,b>0)在点(1,f(1))处的切线的斜率为2,则$\frac{8a+b}{ab}$的最小值是(  )
A.10B.9C.8D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若α,β∈(0,$\frac{π}{2}$),sin($\frac{α}{2}-β$)=-$\frac{1}{2}$,cos($α-\frac{β}{2}$)=$\frac{{\sqrt{3}}}{2}$,则α+β=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知圆M:x2+y2-4x-4y=0与x轴交于P、Q两点,则劣弧PQ所对的圆心角的大小为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知随机变量ξ服从正态分布N(2017,σ2),则P(ξ<2017)等于(  )
A.$\frac{1}{1008}$B.$\frac{1}{2016}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案