精英家教网 > 高中数学 > 题目详情
15.如图,在平面直角坐标系xOy中,边长为1的正△OAB的顶点A,B均在第一象限,设点A在x轴的射影为C,∠AOC=α.
(1)试将$\overrightarrow{OA}$•$\overrightarrow{CB}$表示α的函数f(α),并写出其定义域;
(2)求函数f(α)的值域.

分析 (1)根据题意,用α表示出$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$,求出$\overrightarrow{CB}$,
利用数量积个数计算f(α)并化简,写出α的取值范围;
(2)根据α的取值范围即可求出函数f(α)的值域.

解答 解:(1)根据题意,|$\overrightarrow{OA}$|=1,∠AOC=α,
∴$\overrightarrow{OA}$=(cosα,sinα),
$\overrightarrow{OB}$=(cos(α+$\frac{π}{3}$),sin(α+$\frac{π}{3}$)),
$\overrightarrow{OC}$=(cosα,0);
∴$\overrightarrow{CB}$=$\overrightarrow{OB}$-$\overrightarrow{OC}$=(cos(α+$\frac{π}{3}$)-cosα,sin(α+$\frac{π}{3}$)),
∴f(α)=$\overrightarrow{OA}$•$\overrightarrow{CB}$=cosα[cos(α+$\frac{π}{3}$)-cosα]+sinαsin(α+$\frac{π}{3}$)
=cos[(α+$\frac{π}{3}$)-α]-cos2α
=$\frac{1}{2}$-$\frac{1+cos2α}{2}$
=-$\frac{1}{2}$cos2α,其中α∈(0,$\frac{π}{6}$);
(2)由(1)知,f(α)=-$\frac{1}{2}$cos2α,
α∈(0,$\frac{π}{6}$)时,2α∈(0,$\frac{π}{3}$),
cos2α∈($\frac{1}{2}$,1),
∴-$\frac{1}{2}$cos2α∈(-$\frac{1}{2}$,-$\frac{1}{4}$),
∴函数f(α)的值域为(-$\frac{1}{2}$,-$\frac{1}{4}$).

点评 本题考查了三角函数的恒等变换与数量积的计算问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如表:
使用智能手机不使用智能手机总计
学习成绩优秀4812
学习成绩不优秀16218
总计201030
附表:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
经计算K2的观测值为10,则下列选项正确的是(  )
A.有99.5%的把握认为使用智能手机对学习有影响
B.有99.5%的把握认为使用智能手机对学习无影响
C.在犯错误的概率不超过0.001的前提下认为使用智能手机对学习有影响
D.在犯错误的概率不超过0.001的前提下认为使用智能手机对学习无影响

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.?x1∈(1,2),?x2∈(1,2)使得lnx1=x1+$\frac{1}{3}m{x_2}^3-m{x_2}$,则正实数m的取值范围是(  )
A.$({3-\frac{3}{2}ln2,+∞})$B.$[{3-\frac{3}{2}ln2,+∞})$C.[3-3ln2,+∞)D.(3-3ln2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的首项a1=1,前n项和为Sn,且an+1=2an+1,n∈N*
(1)证明数列{an+1}是等比数列并求数列{an}的通项公式;
(2)证明:$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设集合A={1,2},B=(a+1,2),若A∪B={1,2,3},则实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆x2+y2=9内有一点P(-1,2),AB为过点P的弦且倾斜角为θ.
(1)若θ=135°,求弦AB的长;
(2)当弦AB被点P平分时,求出直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C底面ABC,AA1=A1C=AC=AB=BC=2,且点O为AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求二面角A1-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2+(2a+1)x+b,其中a,b∈R.
(Ⅰ)当a=1,b=-4时,求函数f(x)的零点;
(Ⅱ)如果函数f(x)的图象在直线y=x+2的上方,证明:b>2;
(Ⅲ)当b=2时,解关于x的不等式f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}中,a2=-1,a6=7.
(1)求数列{an}的通项公式;
(2)若bn=($\frac{1}{2}$)nan,数列{bn}的前n项和为Sn,求Sn

查看答案和解析>>

同步练习册答案