精英家教网 > 高中数学 > 题目详情
10.设集合A={1,2},B=(a+1,2),若A∪B={1,2,3},则实数a的值为2.

分析 由并集定义得a+1=3,由此能求出实数a的值.

解答 解:∵集合A={1,2},B=(a+1,2),A∪B={1,2,3},
∴a+1=3,解得实数a的值2.
故答案为:2.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意并集的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的各项均为正数,Sn表示数列{an}的前n项的和,且$2{S_n}=a_n^2+{a_n}$
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知a,t为正实数,函数f(x)=x2-2x+a,且对任意的x∈[0,t]都有f(x)∈[-a,a].若对每一个正实数a,记t的最大值为g(a),则$g(1)+g(\frac{3}{8})$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解下列关于x的不等式
(1)$\frac{{{x^2}+1}}{x-1}≥x+\frac{5}{x-1}+3$ 
(2)ax2-(a+2)x+2≤0(其中a>0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.关于函数f(x)=$\frac{2}{x}$+lnx,下列说法错误的是(  )
A.x=2是f(x)的极小值点
B.函数y=f(x)-x有且只有1个零点
C.存在正实数k,使得f(x)>kx恒成立
D.对任意两个不相等的正实数x1,x2,若f(x1)=f(x2),则x1+x2>4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在平面直角坐标系xOy中,边长为1的正△OAB的顶点A,B均在第一象限,设点A在x轴的射影为C,∠AOC=α.
(1)试将$\overrightarrow{OA}$•$\overrightarrow{CB}$表示α的函数f(α),并写出其定义域;
(2)求函数f(α)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆(x+1)2+(y-2)2=1上一点P到直线4x-3y-5=0的距离为d,则d的最小值为(  )
A.1B.2C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一个袋中装有黑球,白球和红球共n(n∈N*)个,这些球除颜色外完全相同.已知从袋中任意摸出1个球,得到黑球的概率是$\frac{2}{5}$.现从袋中任意摸出2个球.
(Ⅰ) 用含n的代数式表示摸出的2球都是黑球的概率,并写出概率最小时n的值.(直接写出n的值)
(Ⅱ) 若n=15,且摸出的2个球中至少有1个白球的概率是$\frac{4}{7}$,设X表示摸出的2个球中红球的个数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若不等式kx2+kx-1≤0(k为实数)的解集为R,则直线kx+y-2=0的斜率的最大值等于(  )
A.2B.4C.5D.8

查看答案和解析>>

同步练习册答案