精英家教网 > 高中数学 > 题目详情
17.已知圆M:x2+y2-4x-4y=0与x轴交于P、Q两点,则劣弧PQ所对的圆心角的大小为$\frac{π}{2}$.

分析 令y=0,得P(0,0),Q(4,0),圆心M(2,2),半径r=2$\sqrt{2}$,弦长|PQ|=4,由此能求出劣弧PQ所对的圆心角的大小.

解答 解:∵圆M:x2+y2-4x-4y=0与x轴交于P、Q两点,
∴令y=0,得x=0,或x=4,
∴P(0,0),Q(4,0),
圆心M(2,2),半径r=$\frac{1}{2}\sqrt{16+16}$=2$\sqrt{2}$,
弦长|PQ|=4,
∴|PM|2+|QM|2=|PQ|2,∴MP⊥MQ,
∴劣弧PQ所对的圆心角∠PMQ=$\frac{π}{2}$.
故答案为:$\frac{π}{2}$.

点评 本题考查圆心角的求法,考查圆、勾股定理、两点间距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2+(2a+1)x+b,其中a,b∈R.
(Ⅰ)当a=1,b=-4时,求函数f(x)的零点;
(Ⅱ)如果函数f(x)的图象在直线y=x+2的上方,证明:b>2;
(Ⅲ)当b=2时,解关于x的不等式f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}中,a2=-1,a6=7.
(1)求数列{an}的通项公式;
(2)若bn=($\frac{1}{2}$)nan,数列{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=a-$\frac{2}{{2}^{x}+1}$.
(1)求证:不论a为何实数,f(x)一定为增函数;
(2)确定a的值,使f(x)为奇函数,并求此时f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正项数列{an}的首项a1=1,前n项和Sn满足an=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$(n≥2)
(1)求证:$\left\{{\sqrt{S_n}\left.{\;}\right\}}$为等差数列,并求数列{an}的通项公式.
(2)是否存在实数λ,使得数列$\left\{{\frac{S_n}{{λ+{a_n}}}}\right\}$成等差数列?若存在,求出λ的值和该数列前n项的和;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.平面直角坐标系xoy中,点A(2,0)在曲线C:$\left\{\begin{array}{l}{x=acosφ}\\{y=sinφ}\end{array}$(φ为参数,a>0)上.以原点O为极点,x轴正半轴为极轴建立极坐标系,若点M,N的极坐标分别为(ρ1,θ),(ρ2,θ+$\frac{π}{2}$),且点M,N都在曲线C上,则$\frac{1}{ρ_1^2}+\frac{1}{ρ_2^2}$=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,且${S_n}=2{n^2}+n$,n∈N*,在数列{bn}中,b1=1,bn+1=2bn+3,n∈N*
(1)求证:{bn+3}是等比数列;
(2)若cn=log2(bn+3),求数列$\{\frac{1}{{{c_n}{c_{n+1}}}}\}$的前n项和Rn
(3)求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为了调查某地区一周外卖需求情况,用分层抽样方法从该地区调查了家庭,结果如下:
时间
是否需要外卖
周末非周末
需要4030
不需要160270
(1)估计该地区订餐,需要外卖的比例;
(2)能否在犯错误的概率不超过0.01的前提下认为该地区的外卖需求与时间有关;
(3)根据(2)的结论,能否提出更加的调查方法来估计该地区的外卖中,需要家庭的比例?说说理由?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.0500.0100.001
K3.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若复数z满足z-2i=-i•z,则z=(  )
A.-1+iB.1-iC.1+iD.-1-i

查看答案和解析>>

同步练习册答案