分析 由0<θ<π,且sinθ+cosθ=-$\frac{1}{5}$①,判断θ∈($\frac{π}{2}$,π),即cosθ<0,利用同角三角函数的基本关系sin2θ+cos2θ=1②,联立①②,求得sinθ和cosθ的值,可得tanθ的值.
解答 解:由0<θ<π,且sinθ+cosθ=-$\frac{1}{5}$①,说明sinθ和cosθ中至少有一个是负数,
如果θ∈(0,$\frac{π}{2}$),sinθ>0而且cosθ>0,可得sinθ+cosθ>0,与题意不符,舍去,
因此θ∈($\frac{π}{2}$,π),即θ是第二象限角,∴cosθ<0,
由sin2θ+cos2θ=1②,
联立①②,可得:$(-\frac{1}{5}-cosθ)^{2}+co{s}^{2}θ=1$,化简整理得25cos2θ+5cosθ-12=0,
解得:$cosθ=\frac{3}{5}$(舍去)或$cosθ=-\frac{4}{5}$,
∴$sinθ=\sqrt{1-co{s}^{2}θ}=\frac{3}{5}$.
∴tanθ=$\frac{sinθ}{cosθ}=-\frac{3}{4}$.
点评 本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (0,1) | C. | (1,+∞) | D. | (-∞,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com