精英家教网 > 高中数学 > 题目详情
7.i是虚数单位,若复数(x2-5x+6)+(x-3)i是纯虚数,则实数x的值为2.

分析 由复数(x2-5x+6)+(x-3)i是纯虚数,得实部等于0且虚部不等于0,求解即可得答案.

解答 解:∵复数(x2-5x+6)+(x-3)i是纯虚数,
∴$\left\{\begin{array}{l}{{x}^{2}-5x+6=0}\\{x-3≠0}\end{array}\right.$,解得x=2.
故答案为:2.

点评 本题考查复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-3x2
(Ⅰ) 求f(x)的单调区间;
(Ⅱ) 若f(x)的定义域为[-1,m]时,值域为[-4,0],求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式$\frac{2}{x-1}$≥1的解集(1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC的三个顶点是A(4,0),B(6,5),C(0,3).
(1)求BC边上的高所在直线的方程;
(2)求BC边上的中线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.不等式$\frac{1}{x}≤2$的解集为(  )
A.$[\frac{1}{2},+∞)$B.$(-∞,0)∪[\frac{1}{2},+∞)$C.$(-∞,\frac{1}{2}]$D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的各项均为正数,Sn表示数列{an}的前n项的和,且$2{S_n}=a_n^2+{a_n}$
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.双曲线$\frac{y^2}{64}-\frac{x^2}{36}=1$上一点P到它的一个焦点的距离等于3,那么点P与两个焦点所构成的三角形的周长等于42.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知0<θ<π,且sinθ+cosθ=-$\frac{1}{5}$,求tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.关于函数f(x)=$\frac{2}{x}$+lnx,下列说法错误的是(  )
A.x=2是f(x)的极小值点
B.函数y=f(x)-x有且只有1个零点
C.存在正实数k,使得f(x)>kx恒成立
D.对任意两个不相等的正实数x1,x2,若f(x1)=f(x2),则x1+x2>4

查看答案和解析>>

同步练习册答案