精英家教网 > 高中数学 > 题目详情
2.不等式$\frac{1}{x}≤2$的解集为(  )
A.$[\frac{1}{2},+∞)$B.$(-∞,0)∪[\frac{1}{2},+∞)$C.$(-∞,\frac{1}{2}]$D.[2,+∞)

分析 根据分式不等式的解法即可得到结论.

解答 解:不等式等价为$\left\{\begin{array}{l}{x>0}\\{2x≥1}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{2x≤1}\end{array}\right.$,
即x≥$\frac{1}{2}$,或x<0,
故不等式的解集为{x|x≥$\frac{1}{2}$或x<0},
故选:B.

点评 本题主要考查分式不等式的求解,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.抛物线y=$\frac{1}{8}$x2的准线方程为(  )
A.$y=-\frac{1}{32}$B.y=-2C.x=-2D.x=-$\frac{1}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的上下两个焦点分别为F1,F2,过点F1与y轴垂直的直线交椭圆C于M、N两点,△MNF2的面积为$\sqrt{3}$,椭圆C的离心率为$\frac{\sqrt{3}}{2}$
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知O为坐标原点,直线l:y=kx+m与y轴交于点P(P不与原点O重合),与椭圆C交于A,B两个不同的点,使得$\overrightarrow{AP}=3\overrightarrow{PB}$,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线y2=$\frac{1}{8}$x,则它的准线方程为(  )
A.y=-2B.y=2C.x=-$\frac{1}{32}$D.x=$\frac{1}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某班举行的联欢会由5个节目组成,节目演出顺序要求如下:节目甲不能排在第一个,并且节目甲必须和节目乙相邻,则该班联欢会节目演出顺序的编排方案共有42种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.i是虚数单位,若复数(x2-5x+6)+(x-3)i是纯虚数,则实数x的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知X的分布列为
X-101
P$\frac{1}{2}$$\frac{1}{3}$$\frac{1}{6}$
设y=2x+3,则E(Y)的值为(  )
A.$\frac{7}{3}$B.4C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$是同一平面内的三个向量,其中$\overrightarrow a$=(-$\sqrt{2}$,1).
(1)若|$\overrightarrow c$|=2 且 $\overrightarrow a$∥$\overrightarrow c$,求$\overrightarrow c$的坐标;
(2)若|$\overrightarrow b$|=$\sqrt{2}$,($\overrightarrow a$+3$\overrightarrow b$)⊥($\overrightarrow a$-$\overrightarrow b$),求向量$\overrightarrow a$,$\overrightarrow b$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若不等式-2≤x2-2ax+a≤0有唯一解,则a的值为0或1.

查看答案和解析>>

同步练习册答案