精英家教网 > 高中数学 > 题目详情
14.已知X的分布列为
X-101
P$\frac{1}{2}$$\frac{1}{3}$$\frac{1}{6}$
设y=2x+3,则E(Y)的值为(  )
A.$\frac{7}{3}$B.4C.-1D.1

分析 由X的分布列,求出E(X),由Y=2X+3,得E(Y)=2E(X)+3,由此能求出结果.

解答 解:由X的分布列,得:
E(X)=$-1×\frac{1}{2}+0-\frac{1}{3}+1×\frac{1}{6}$=-$\frac{1}{3}$,
∵Y=2X+3,
∴E(Y)=2E(X)+3=-$\frac{2}{3}+3$=$\frac{7}{3}$.
故选:A.

点评 本题考查离散型随机变量的数学期望的求法,考查离散型随机变量ξ的分布列及数学期望等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在等差数列{an}中,a2+a4=5,则a3=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式组$\left\{\begin{array}{l}{{x}^{2}-1<0}\\{{x}^{2}-3x<0}\end{array}\right.$的解集是(  )
A.{x|-1<x<1}B.{x|-1<x<3}C.{x|0<x<1}D.{x|0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.不等式$\frac{1}{x}≤2$的解集为(  )
A.$[\frac{1}{2},+∞)$B.$(-∞,0)∪[\frac{1}{2},+∞)$C.$(-∞,\frac{1}{2}]$D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≤0}\\{x+y-7≤0}\\{x≥1}\end{array}\right.$,则$\frac{y}{x}$的最大值为(  )
A.3B.$\frac{9}{5}$C.6D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.双曲线$\frac{y^2}{64}-\frac{x^2}{36}=1$上一点P到它的一个焦点的距离等于3,那么点P与两个焦点所构成的三角形的周长等于42.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校高一年级甲班共48人,其中优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯的调查.
(1)求应从优秀生、中等生、学困生中分别抽取的学生人数;
(2)若从抽取的6名学生中随机抽取2名学生做进一步的数据分析,
①列出所有可能的抽取的结果;
②求抽取的2名学生均为中等生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解下列不等式.
(1)-4x2+12x-9<0;
(2)$\frac{x+1}{2x+1}$≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知两曲线f(x)=cosx与g(x)=$\sqrt{3}$sinx的一个交点为P,则点P到x轴的距离为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案