精英家教网 > 高中数学 > 题目详情
18.不等式$\frac{2}{x-1}$≥1的解集(1,3].

分析 根据分式不等式的解法求出不等式的解集即可.

解答 解:∵$\frac{2}{x-1}$≥1,
∴$\frac{2}{x-1}$-$\frac{x-1}{x-1}$≥0,
∴$\frac{3-x}{x-1}$≥0,
即$\frac{x-3}{x-1}$≤0,
解得:1<x≤3,
故不等式的解集是(1,3],
故答案为:(1,3].

点评 本题考查了解绝对值不等式问题,考查转化思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.命题“?x≠0,x2>0”的否定是(  )
A.?x≠0,x2≤0B.?x=0,x2≤0C.?x0≠0,${x_0}^2≤0$D.?x0=0,${x_0}^2≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若将函数y=sinx+$\sqrt{3}$cosx的图象向右平移φ(φ>0)个单位长度得到函数y=sinx-$\sqrt{3}$cosx的图象,则φ的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是同一平而内的三个向量,其中$\overrightarrow{a}$=(1,-1).
(1)若|$\overrightarrow{c}$|=3$\sqrt{2}$,且$\overrightarrow{c}$∥$\overrightarrow{a}$,求向量$\overrightarrow{c}$的坐标;
(2)若|$\overrightarrow{b}$|=1,且$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的上下两个焦点分别为F1,F2,过点F1与y轴垂直的直线交椭圆C于M、N两点,△MNF2的面积为$\sqrt{3}$,椭圆C的离心率为$\frac{\sqrt{3}}{2}$
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知O为坐标原点,直线l:y=kx+m与y轴交于点P(P不与原点O重合),与椭圆C交于A,B两个不同的点,使得$\overrightarrow{AP}=3\overrightarrow{PB}$,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.有一段演绎推理是这样的“所有边长都相等的多边形为凸多边形,菱形是所有边长都相等的凸多边形,所有菱形是正多边形”结论显然是错误的,是因为(  )
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线y2=$\frac{1}{8}$x,则它的准线方程为(  )
A.y=-2B.y=2C.x=-$\frac{1}{32}$D.x=$\frac{1}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.i是虚数单位,若复数(x2-5x+6)+(x-3)i是纯虚数,则实数x的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义在R上的函数f(x)满足f(1)=2,且对任意x∈R都有f′(x)>3,则不等式f(x)>3x-1的解集为(  )
A.(1,2)B.(0,1)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

同步练习册答案