精英家教网 > 高中数学 > 题目详情
3.有一段演绎推理是这样的“所有边长都相等的多边形为凸多边形,菱形是所有边长都相等的凸多边形,所有菱形是正多边形”结论显然是错误的,是因为(  )
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

分析 在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是推理形式错误.

解答 解:大前提:所有边长都相等的多边形为凸多边形,
小前提:菱形是所有边长都相等的凸多边形,
结论:所有菱形是正凸多边形,
因此:推理形式错误
故选:C.

点评 本题是一个简单的演绎推理,这种问题不用进行运算,只要根据所学的知识点,判断这种说法是否正确,是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数y=$\frac{1}{3}$x3-x+c的图象与x轴恰有两个公共点,则c=(  )
A.$±\frac{2}{3}$B.$\frac{4}{3}$或$\frac{2}{3}$C.-1或1D.$-\frac{4}{3}$或$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数y=sin(ωx+φ)(ω>0,0<φ≤$\frac{π}{2}$)的部分图象如图所示,则cos(5ωφ)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式$\frac{x}{x-1}$≥-1的解集为(  )
A.(-∞,$\frac{1}{2}$]∪(1,+∞)B.[$\frac{1}{2}$,+∞)C.[$\frac{1}{2}$,1)∪(1,+∞)D.(-∞,$\frac{1}{2}$]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式$\frac{2}{x-1}$≥1的解集(1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式$\frac{x-1}{x}$>1的解集为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC的三个顶点是A(4,0),B(6,5),C(0,3).
(1)求BC边上的高所在直线的方程;
(2)求BC边上的中线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的各项均为正数,Sn表示数列{an}的前n项的和,且$2{S_n}=a_n^2+{a_n}$
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知a,t为正实数,函数f(x)=x2-2x+a,且对任意的x∈[0,t]都有f(x)∈[-a,a].若对每一个正实数a,记t的最大值为g(a),则$g(1)+g(\frac{3}{8})$=$\frac{5}{2}$.

查看答案和解析>>

同步练习册答案