精英家教网 > 高中数学 > 题目详情
11.不等式$\frac{x}{x-1}$≥-1的解集为(  )
A.(-∞,$\frac{1}{2}$]∪(1,+∞)B.[$\frac{1}{2}$,+∞)C.[$\frac{1}{2}$,1)∪(1,+∞)D.(-∞,$\frac{1}{2}$]∪[1,+∞)

分析 根据分式不等式的解法求出不等式的解集即可.

解答 解:∵$\frac{x}{x-1}$≥-1,
∴$\frac{x}{x-1}$+$\frac{x-1}{x-1}$≥0,
∴$\frac{2x-1}{x-1}$≥0,
∴x>1或x≤$\frac{1}{2}$,
故不等式的解集是:(-∞,$\frac{1}{2}$]∪(1,+∞),
故选:A.

点评 本题考查了解分式不等式问题,考查转化思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了50名女性和50名男性,根据调研结果得到如图所示的等高条形图
(Ⅰ)完成下列2×2列联表:
 喜欢旅游不喜欢旅游合计
女性   
男性   
合计   
(2)能否在犯错率不超过0.025的前提下认为“喜欢旅游与性别有关”
附:
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,若$a=\sqrt{3}$,c=2,$cosB=\frac{1}{3}$,则△ABC的面积为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{2\sqrt{6}}}{3}$D.$\frac{{4\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+ax2+bx+a2(a、b∈R)
(1)若函数f(x)在x=1处有极值为10,求b的值;
(2)若a=-4,f(x)在x∈[0,2]上单调递增,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是同一平而内的三个向量,其中$\overrightarrow{a}$=(1,-1).
(1)若|$\overrightarrow{c}$|=3$\sqrt{2}$,且$\overrightarrow{c}$∥$\overrightarrow{a}$,求向量$\overrightarrow{c}$的坐标;
(2)若|$\overrightarrow{b}$|=1,且$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若集合A={1,2,3,4},B={1,2,3},则从集合A到集合B的不同映射的个数是(  )
A.12B.24C.64D.81

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.有一段演绎推理是这样的“所有边长都相等的多边形为凸多边形,菱形是所有边长都相等的凸多边形,所有菱形是正多边形”结论显然是错误的,是因为(  )
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+2ax+1,a≠0.
(Ⅰ) 当a=1时,解不等式f(x)>4;
(Ⅱ) 若函数f(x)在区间(1,2)上恰有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示.
求:(1)函数f(x)的解析式;
(2)函数f(x)的单调递减区间.

查看答案和解析>>

同步练习册答案